Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2017.06.011
DC FieldValue
dc.titleUltrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation
dc.contributor.authorCheng, Youdong
dc.contributor.authorWang, Xuerui
dc.contributor.authorJia, Chuankun
dc.contributor.authorWang, Yuxiang
dc.contributor.authorZhai, Linzhi
dc.contributor.authorWang, Qing
dc.contributor.authorZhao, Dan
dc.date.accessioned2020-06-17T09:21:52Z
dc.date.available2020-06-17T09:21:52Z
dc.date.issued2017-10-01
dc.identifier.citationCheng, Youdong, Wang, Xuerui, Jia, Chuankun, Wang, Yuxiang, Zhai, Linzhi, Wang, Qing, Zhao, Dan (2017-10-01). Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. JOURNAL OF MEMBRANE SCIENCE 539 : 213-223. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2017.06.011
dc.identifier.issn03767388
dc.identifier.issn18733123
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/170188
dc.description.abstract© 2017 Elsevier B.V. Ultrathin mixed matrix membranes (MMMs) containing two-dimensional (2D) fillers are highly sought recently due to their good performance in gas separations. Here we report the preparation of PIM-1 based ultrathin MMMs containing 2D metal-organic framework (MOF) nanosheets using spin coating method. The lamellar structure of the 2D layered MOF filler (copper 1,4-benzenedicarboxylate nanosheets, CuBDC-ns) enlarges the contacting area between fillers and the polymer matrix, leading to the formation of dense MMMs. The centrifugal force generated during the spin coating process helps to horizontally align these CuBDC-ns, increasing the gas diffusion resistance across the membrane. The influence of membrane thickness and filler content on the separation performance of CO2/CH4 mixture is examined and discussed. Optimizing membrane thickness and filler content results in a 660 nm thick ultrathin MMM comprising 10 wt% CuBDC-ns, which exhibits a CO2/CH4 selectivity of 15.6 and CO2 permeance as high as 407 GPU, surpassing other PIM-1 based membranes. Besides, the long term stability test shows that the prepared ultrathin MMMs are stable up to 100 h. These results demonstrate that the ultrathin MMMs reported in this study are excellent candidates for CO2/CH4 separation, with potential applications in natural gas purification and biogas upgrading.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectEngineering, Chemical
dc.subjectPolymer Science
dc.subjectEngineering
dc.subjectMixed matrix membranes
dc.subjectMetal-organic frameworks
dc.subjectTwo dimensional fillers
dc.subjectSpin coating
dc.subjectCO2/CH4 separation
dc.subjectINTRINSIC MICROPOROSITY PIM-1
dc.subjectGAS PERMEATION PARAMETERS
dc.subjectGRAPHENE OXIDE MEMBRANES
dc.subjectCO2 CAPTURE
dc.subjectPOLYIMIDE MEMBRANES
dc.subjectBLEND MEMBRANES
dc.subjectPOLYMER
dc.subjectPERFORMANCE
dc.subjectTRANSPORT
dc.subjectFILLERS
dc.typeArticle
dc.date.updated2020-06-17T08:13:03Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1016/j.memsci.2017.06.011
dc.description.sourcetitleJOURNAL OF MEMBRANE SCIENCE
dc.description.volume539
dc.description.page213-223
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Zhao_JMS_MMMs with CuBDC_manuscript_02.docxAccepted version26.26 MBMicrosoft Word XML

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.