Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.biomaterials.2017.10.031
DC FieldValue
dc.titleDual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection
dc.contributor.authorFeng, Guangxue
dc.contributor.authorLi, Jackson Liang Yao
dc.contributor.authorClaser, Carla
dc.contributor.authorBalachander, Akhila
dc.contributor.authorTan, Yingrou
dc.contributor.authorGoh, Chi Ching
dc.contributor.authorKwok, Immanuel Weng Han
dc.contributor.authorRenia, Laurent
dc.contributor.authorTang, Ben Zhong
dc.contributor.authorNg, Lai Guan
dc.contributor.authorLiu, Bin
dc.date.accessioned2020-06-17T03:30:05Z
dc.date.available2020-06-17T03:30:05Z
dc.date.issued2018-01-01
dc.identifier.citationFeng, Guangxue, Li, Jackson Liang Yao, Claser, Carla, Balachander, Akhila, Tan, Yingrou, Goh, Chi Ching, Kwok, Immanuel Weng Han, Renia, Laurent, Tang, Ben Zhong, Ng, Lai Guan, Liu, Bin (2018-01-01). Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection. BIOMATERIALS 152 : 77-85. ScholarBank@NUS Repository. https://doi.org/10.1016/j.biomaterials.2017.10.031
dc.identifier.issn01429612
dc.identifier.issn18785905
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169841
dc.description.abstract© 2017 The study of blood brain barrier (BBB) functions is important for neurological disorder research. However, the lack of suitable tools and methods has hampered the progress of this field. Herein, we present a hybrid nanodot strategy, termed AIE-Gd dots, comprising of a fluorogen with aggregation-induced emission (AIE) characteristics as the core to provide bright and stable fluorescence for optical imaging, and gadolinium (Gd) for accurate quantification of vascular leakage via inductively-coupled plasma mass spectrometry (ICP-MS). In this report, we demonstrate that AIE-Gd dots enable direct visualization of brain vascular networks under resting condition, and that they form localized punctate aggregates and accumulate in the brain tissue during experimental cerebral malaria, indicative of hemorrhage and BBB malfunction. With its superior detection sensitivity and multimodality, we hereby propose that AIE-Gd dots can serve as a better alternative to Evans blue for visualization and quantification of changes in brain barrier functions.
dc.language.isoen
dc.publisherELSEVIER
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Biomedical
dc.subjectMaterials Science, Biomaterials
dc.subjectEngineering
dc.subjectMaterials Science
dc.subjectInflammation imaging
dc.subjectAggregation-induced emission
dc.subjectBlood brain barrier integrity
dc.subjectTwo-photon fluorescence imaging
dc.subjectVascular imaging
dc.subjectBLOOD-BRAIN-BARRIER
dc.subjectULTRABRIGHT ORGANIC DOTS
dc.subjectSINGLE-CELL RESOLUTION
dc.subjectEVANS BLUE
dc.subjectIN-VIVO
dc.subjectPERMEABILITY
dc.subjectFLUORESCENCE
dc.subjectTRACKING
dc.typeArticle
dc.date.updated2020-06-10T10:54:40Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMICROBIOLOGY AND IMMUNOLOGY
dc.description.doi10.1016/j.biomaterials.2017.10.031
dc.description.sourcetitleBIOMATERIALS
dc.description.volume152
dc.description.page77-85
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Feng-BM dual modal.pdfAccepted version1.33 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.