Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsenergylett.9b01939
DC FieldValue
dc.titleRedox Targeting-Based Vanadium Redox-Flow Battery
dc.contributor.authorCheng, Yuanhang
dc.contributor.authorWang, Xun
dc.contributor.authorHuang, Songpeng
dc.contributor.authorSamarakoon, Widitha
dc.contributor.authorXi, Shibo
dc.contributor.authorJi, Ya
dc.contributor.authorZhang, Hang
dc.contributor.authorZhang, Feifei
dc.contributor.authorDu, Yonghua
dc.contributor.authorFeng, Zhenxing
dc.contributor.authorAdams, Stefan
dc.contributor.authorWang, Qing
dc.date.accessioned2020-06-12T05:37:52Z
dc.date.available2020-06-12T05:37:52Z
dc.date.issued2019-12-01
dc.identifier.citationCheng, Yuanhang, Wang, Xun, Huang, Songpeng, Samarakoon, Widitha, Xi, Shibo, Ji, Ya, Zhang, Hang, Zhang, Feifei, Du, Yonghua, Feng, Zhenxing, Adams, Stefan, Wang, Qing (2019-12-01). Redox Targeting-Based Vanadium Redox-Flow Battery. ACS ENERGY LETTERS 4 (12) : 3028-3035. ScholarBank@NUS Repository. https://doi.org/10.1021/acsenergylett.9b01939
dc.identifier.issn23808195
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169700
dc.description.abstractCopyright © 2019 American Chemical Society. The low energy density and narrow operating temperature window besides the relatively high cost of the vanadium redox-flow battery (VRB) severely hinder its commercial deployment. Herein, in conjunction with low-concentration VO2+/VO2+ catholyte, we introduce a redox targeting-based VRB (RT-VRB) system in which a Prussian blue analogue (PBA), (VO)6[Fe(CN)6]3, is employed as a capacity booster to address the above issues. The charges are reversibly stored in the PBA loaded in the cathodic tank via a redox-targeting reaction with the VO2+/VO2+. Therefore, the concentration of catholyte has been reduced to 0.6 M without sacrificing the capacity. This provides ample room to broaden the operating temperature window of a RT-VRB relative to a conventional VRB. The theoretical volumetric capacity of the PBA could reach 135 Ah/L, which is more than 3 times that of VRB. We anticipate that the RT-VRB system demonstrated here would give credible impetus for VRB chemistry for robust and high-density energy storage applications.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectElectrochemistry
dc.subjectEnergy & Fuels
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPOSITIVE ELECTROLYTE
dc.subjectPRUSSIAN BLUE
dc.subjectADDITIVES
dc.typeArticle
dc.date.updated2020-06-03T07:28:44Z
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1021/acsenergylett.9b01939
dc.description.sourcetitleACS ENERGY LETTERS
dc.description.volume4
dc.description.issue12
dc.description.page3028-3035
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
AM_CARB_WQ_2018.pdf2.32 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.