Please use this identifier to cite or link to this item: https://doi.org/10.1021/acssensors.0c00495
DC FieldValue
dc.titleChip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing.
dc.contributor.authorYUAN HONGYE
dc.contributor.authorLi, Nanxi
dc.contributor.authorLinghu, Jiajun
dc.contributor.authorDONG JINQIAO
dc.contributor.authorWANG YUXIANG
dc.contributor.authorAVISHEK KARMAKAR
dc.contributor.authorYuan, Jiaren
dc.contributor.authorLi, Mengsha
dc.contributor.authorBuenconsejo, Pio John S
dc.contributor.authorLIU GUOLIANG
dc.contributor.authorCai, Hong
dc.contributor.authorPennycook,Stephen John
dc.contributor.authorSingh, Navab
dc.contributor.authorZhao Dan
dc.date.accessioned2020-06-10T07:24:25Z
dc.date.available2020-06-10T07:24:25Z
dc.date.issued2020-05-22
dc.identifier.citationYUAN HONGYE, Li, Nanxi, Linghu, Jiajun, DONG JINQIAO, WANG YUXIANG, AVISHEK KARMAKAR, Yuan, Jiaren, Li, Mengsha, Buenconsejo, Pio John S, LIU GUOLIANG, Cai, Hong, Pennycook,Stephen John, Singh, Navab, Zhao Dan (2020-05-22). Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing.. ACS Sens 5 (5) : 1474-1481. ScholarBank@NUS Repository. https://doi.org/10.1021/acssensors.0c00495
dc.identifier.issn2379-3694
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169624
dc.description.abstractState-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.
dc.publisherAmerican Chemical Society (ACS)
dc.sourceElements
dc.subjectbenzene detection
dc.subjectcapacitive gas sensing
dc.subjectcovalent organic frameworks
dc.subjectin situ film growth
dc.subjectsub-ppm level
dc.typeArticle
dc.date.updated2020-06-02T08:54:10Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1021/acssensors.0c00495
dc.description.sourcetitleACS Sens
dc.description.volume5
dc.description.issue5
dc.description.page1474-1481
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Zhao_2020_ACS Sensors_COF for sensing_manuscript.docxSubmitted version5.26 MBMicrosoft Word XML

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.