Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.5083942
DC FieldValue
dc.titleHighly conductive 3D metal-rubber composites for stretchable electronic applications
dc.contributor.authorZHAO YUE
dc.contributor.authorYANG WEIDONG
dc.contributor.authorTan, Yu Jun
dc.contributor.authorLI SI
dc.contributor.authorZeng, Xianting
dc.contributor.authorLIU ZHUANGJIAN
dc.contributor.authorTEE CHEE KEONG, BENJAMIN
dc.date.accessioned2020-05-08T02:11:12Z
dc.date.available2020-05-08T02:11:12Z
dc.date.issued2019-03-01
dc.identifier.citationZHAO YUE, YANG WEIDONG, Tan, Yu Jun, LI SI, Zeng, Xianting, LIU ZHUANGJIAN, TEE CHEE KEONG, BENJAMIN (2019-03-01). Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL MATERIALS 7 (3). ScholarBank@NUS Repository. https://doi.org/10.1063/1.5083942
dc.identifier.issn2166-532X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/167828
dc.description.abstractStretchable conductors are critical building blocks for enabling new forms of wearable and curvilinear electronics. In this paper, we introduce a new method using the interfacial design to enable stretchable conductors with ultra-high conductivity and robustness to strain using three-dimensional helical copper micro-interconnects embedded in an elastic rubber substrate (eHelix-Cu). We studied the interfacial mechanics of the metal-elastomer to achieve highly reversible conductivities with strains. The stretchable eHelix-Cu interconnect has an ultra-high conductivity (∼105 S cm-1) that remains almost invariant when stretched to 170%, which is significantly higher than in other approaches using nanomaterials. The stretchable conductors can withstand strains of 100% for thousands of cycles, demonstrating remarkable durability for exciting potential wearable electronic applications.
dc.language.isoen
dc.publisherAmerican Institute of Physics Inc.
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectPRINTABLE ELASTIC CONDUCTORS
dc.subjectSTRAIN SENSORS
dc.subjectTRANSPARENT
dc.subjectFABRICATION
dc.subjectDEVICES
dc.subjectTHERAPY
dc.subjectDESIGN
dc.subjectHYBRID
dc.typeArticle
dc.date.updated2020-05-06T15:31:57Z
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1063/1.5083942
dc.description.sourcetitleAPL MATERIALS
dc.description.volume7
dc.description.issue3
dc.published.statePublished
dc.grant.fundingagencySingapore National Research Foundation (NRF)
dc.grant.fundingagencyPrime Minister’s Office
dc.grant.fundingagencyNational University of Singapore (NUS)
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Zhao et al. - 2019 - Highly conductive 3D metal-rubber composites for stretchable electronic applications - APL Materials(2).pdfAccepted version5.01 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.