Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pcbi.1003342
DC FieldValue
dc.titleAssessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data
dc.contributor.authorSikora-Wohlfeld W.
dc.contributor.authorAckermann M.
dc.contributor.authorChristodoulou E.G.
dc.contributor.authorSingaravelu K.
dc.contributor.authorBeyer A.
dc.date.accessioned2020-03-13T05:25:22Z
dc.date.available2020-03-13T05:25:22Z
dc.date.issued2013
dc.identifier.citationSikora-Wohlfeld W., Ackermann M., Christodoulou E.G., Singaravelu K., Beyer A. (2013). Assessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data. PLoS Computational Biology 9 (11) : e1003342. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pcbi.1003342
dc.identifier.issn1553734X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/165401
dc.description.abstractChromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite the precision of these experiments, identification of genes directly regulated by a TF (target genes) is not trivial. Numerous target gene scoring methods have been used in the past. However, their suitability for the task and their performance remain unclear, because a thorough comparative assessment of these methods is still lacking. Here we present a systematic evaluation of computational methods for defining TF targets based on ChIP-seq data. We validated predictions based on 68 ChIP-seq studies using a wide range of genomic expression data and functional information. We demonstrate that peak-to-gene assignment is the most crucial step for correct target gene prediction and propose a parameter-free method performing most consistently across the evaluation tests. © 2013 Sikora-Wohlfeld et al.
dc.publisherPublic Library of Science
dc.sourceUnpaywall 20200320
dc.subjecttranscription factor
dc.subjectarticle
dc.subjectchromatin immunoprecipitation
dc.subjectcomputer analysis
dc.subjectgene expression
dc.subjectgene function
dc.subjectgene identification
dc.subjectgene targeting
dc.subjectgenetic association
dc.subjectgenome
dc.subjectprotein binding
dc.subjectsequence analysis
dc.subjectvalidation process
dc.subjectAlgorithms
dc.subjectAnimals
dc.subjectBinding Sites
dc.subjectChromatin Immunoprecipitation
dc.subjectDatabases, Genetic
dc.subjectGenome
dc.subjectGenomics
dc.subjectMice
dc.subjectModels, Statistical
dc.subjectReproducibility of Results
dc.subjectSequence Analysis, DNA
dc.subjectTranscription Factors
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1371/journal.pcbi.1003342
dc.description.sourcetitlePLoS Computational Biology
dc.description.volume9
dc.description.issue11
dc.description.pagee1003342
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pcbi_1003342.pdf456.37 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.