Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0034200
DC FieldValue
dc.titleNatural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats
dc.contributor.authorSingh B.K.
dc.contributor.authorTripathi M.
dc.contributor.authorChaudhari B.P.
dc.contributor.authorPandey P.K.
dc.contributor.authorKakkar P.
dc.date.accessioned2019-11-11T06:40:43Z
dc.date.available2019-11-11T06:40:43Z
dc.date.issued2012
dc.identifier.citationSingh B.K., Tripathi M., Chaudhari B.P., Pandey P.K., Kakkar P. (2012). Natural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats. PLoS ONE 7 (4) : e34200. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0034200
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161990
dc.description.abstractNimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P&0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P&0.05). A combination of camphene and geraniol (CG; 1:1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity. © 2012 Singh et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subject8 hydroxyguanine
dc.subjectalanine aminotransferase
dc.subjectapoptosis inducing factor
dc.subjectaspartate aminotransferase
dc.subjectbilirubin
dc.subjectbiological marker
dc.subjectcamphene
dc.subjectcaspase 3
dc.subjectcaspase 9
dc.subjectcopper zinc superoxide dismutase
dc.subjectcytochrome c
dc.subjectDNA
dc.subjectendonuclease G
dc.subjectgeraniol
dc.subjectglutathione
dc.subjectglutathione peroxidase
dc.subjectglutathione reductase
dc.subjectinducible nitric oxide synthase
dc.subjectmanganese superoxide dismutase
dc.subjectmessenger RNA
dc.subjectmitochondrial nitric oxide synthase
dc.subjectneuronal nitric oxide synthase
dc.subjectnimesulide
dc.subjectreactive nitrogen species
dc.subjectreactive oxygen metabolite
dc.subjectreduced nicotinamide adenine dinucleotide phosphate
dc.subjectsilymarin
dc.subjectterpene derivative
dc.subjectunclassified drug
dc.subjectantioxidant
dc.subjectapoptosis regulatory protein
dc.subjectbiological product
dc.subjectcaspase 3
dc.subjectcaspase 9
dc.subjectnimesulide
dc.subjectnucleotide
dc.subjectoxidizing agent
dc.subjectsulfonamide
dc.subjectterpene
dc.subjectalanine aminotransferase blood level
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectantioxidant activity
dc.subjectarticle
dc.subjectaspartate aminotransferase blood level
dc.subjectbilirubin blood level
dc.subjectbody weight
dc.subjectcell membrane permeability
dc.subjectcontrolled study
dc.subjectdisorders of mitochondrial functions
dc.subjectDNA damage
dc.subjectdrug megadose
dc.subjectdrug structure
dc.subjectenzyme activity
dc.subjectenzyme inhibition
dc.subjecthistopathology
dc.subjectimmunoblotting
dc.subjectin vivo study
dc.subjectliver toxicity
dc.subjectmacromolecule
dc.subjectmale
dc.subjectmembrane depolarization
dc.subjectmitochondrial energy transfer
dc.subjectmitochondrion swelling
dc.subjectmolecular mechanics
dc.subjectnonhuman
dc.subjectoxidative stress
dc.subjectprotein expression
dc.subjectprotein secretion
dc.subjectprotein synthesis inhibition
dc.subjectrat
dc.subjectSprague Dawley rat
dc.subjectstructure analysis
dc.subjectanimal
dc.subjectcell death
dc.subjectcell protection
dc.subjectcytology
dc.subjectdrug effect
dc.subjectelectron transport
dc.subjectgenetic transcription
dc.subjecthomeostasis
dc.subjectlipid metabolism
dc.subjectliver
dc.subjectmetabolism
dc.subjectmitochondrial membrane potential
dc.subjectmitochondrion
dc.subjectpathology
dc.subjectpermeability
dc.subjectprotein degradation
dc.subjectsecretion
dc.subjectRattus
dc.subjectAnimals
dc.subjectAntioxidants
dc.subjectApoptosis Regulatory Proteins
dc.subjectBiological Agents
dc.subjectCaspase 3
dc.subjectCaspase 9
dc.subjectCell Death
dc.subjectCytoprotection
dc.subjectDNA Damage
dc.subjectElectron Transport
dc.subjectHomeostasis
dc.subjectLipid Metabolism
dc.subjectLiver
dc.subjectMale
dc.subjectMembrane Potential, Mitochondrial
dc.subjectMitochondria
dc.subjectNucleotides
dc.subjectOxidants
dc.subjectOxidative Stress
dc.subjectPermeability
dc.subjectProteolysis
dc.subjectRats
dc.subjectRats, Sprague-Dawley
dc.subjectSulfonamides
dc.subjectTerpenes
dc.subjectTranscription, Genetic
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.contributor.departmentNUSHS PROJECT
dc.description.doi10.1371/journal.pone.0034200
dc.description.sourcetitlePLoS ONE
dc.description.volume7
dc.description.issue4
dc.description.pagee34200
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0034200.pdf741.12 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons