Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pcbi.1004180
DC FieldValue
dc.titleInteraction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. coli: A Molecular Dynamics Study
dc.contributor.authorBerglund N.A.
dc.contributor.authorPiggot T.J.
dc.contributor.authorJefferies D.
dc.contributor.authorSessions R.B.
dc.contributor.authorBond P.J.
dc.contributor.authorKhalid S.
dc.date.accessioned2019-11-08T08:47:48Z
dc.date.available2019-11-08T08:47:48Z
dc.date.issued2015
dc.identifier.citationBerglund N.A., Piggot T.J., Jefferies D., Sessions R.B., Bond P.J., Khalid S. (2015). Interaction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. coli: A Molecular Dynamics Study. PLoS Computational Biology 11 (4) : e1004180. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pcbi.1004180
dc.identifier.issn1553734X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161937
dc.description.abstractAntimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development. ? 2015 Berglund et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectlipid A
dc.subjectlipopolysaccharide
dc.subjectpolymyxin derivative
dc.subjectpolymyxin
dc.subjectpolymyxin B(1)
dc.subjectantimicrobial activity
dc.subjectArticle
dc.subjectbacterial membrane
dc.subjectEscherichia coli
dc.subjecthydration
dc.subjectinner membrane
dc.subjectmembrane stabilization
dc.subjectmolecular dynamics
dc.subjectnonhuman
dc.subjectouter membrane
dc.subjectprotein aggregation
dc.subjectprotein interaction
dc.subjectanalogs and derivatives
dc.subjectbiology
dc.subjectcell membrane
dc.subjectchemistry
dc.subjectEscherichia coli
dc.subjectmetabolism
dc.subjectmolecular dynamics
dc.subjectBacteria (microorganisms)
dc.subjectNegibacteria
dc.subjectCell Membrane
dc.subjectComputational Biology
dc.subjectEscherichia coli
dc.subjectLipopolysaccharides
dc.subjectMolecular Dynamics Simulation
dc.subjectPolymyxins
dc.typeArticle
dc.contributor.departmentBIOLOGY (NU)
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1371/journal.pcbi.1004180
dc.description.sourcetitlePLoS Computational Biology
dc.description.volume11
dc.description.issue4
dc.description.pagee1004180
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pcbi_1004180.pdf1.77 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons