Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pgen.0010083
DC FieldValue
dc.titleAccurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene
dc.contributor.authorBrunham L.R.
dc.contributor.authorSingaraja R.R.
dc.contributor.authorPape T.D.
dc.contributor.authorKejariwal A.
dc.contributor.authorThomas P.D.
dc.contributor.authorHayden M.R.
dc.date.accessioned2019-11-08T06:40:57Z
dc.date.available2019-11-08T06:40:57Z
dc.date.issued2005
dc.identifier.citationBrunham L.R., Singaraja R.R., Pape T.D., Kejariwal A., Thomas P.D., Hayden M.R. (2005). Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genetics 1 (6) : 739-747. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pgen.0010083
dc.identifier.issn15537390
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161875
dc.description.abstractThe human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation. ? 2005 Brunham et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectABC transporter
dc.subjectABC transporter A1
dc.subjectcholesterol
dc.subjectcomplementary DNA
dc.subjectamino acid substitution
dc.subjectarticle
dc.subjectcell line
dc.subjectgenetic variability
dc.subjectgenetics
dc.subjectgenome
dc.subjecthuman
dc.subjectmetabolism
dc.subjectmissense mutation
dc.subjectmolecular evolution
dc.subjectnucleotide sequence
dc.subjectphenotype
dc.subjectreverse transcription polymerase chain reaction
dc.subjectsingle nucleotide polymorphism
dc.subjectAmino Acid Substitution
dc.subjectATP-Binding Cassette Transporters
dc.subjectCell Line
dc.subjectCholesterol
dc.subjectConserved Sequence
dc.subjectDNA, Complementary
dc.subjectEvolution, Molecular
dc.subjectGenome, Human
dc.subjectHumans
dc.subjectMutation, Missense
dc.subjectPhenotype
dc.subjectPolymorphism, Single Nucleotide
dc.subjectReverse Transcriptase Polymerase Chain Reaction
dc.subjectVariation (Genetics)
dc.typeArticle
dc.contributor.departmentMEDICINE
dc.contributor.departmentDEAN'S OFFICE (MEDICINE)
dc.description.doi10.1371/journal.pgen.0010083
dc.description.sourcetitlePLoS Genetics
dc.description.volume1
dc.description.issue6
dc.description.page739-747
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pgen_0010083.pdf426.87 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons