Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0003373
DC FieldValue
dc.titleMetaSim - A sequencing simulator for genomics and metagenomics
dc.contributor.authorRichter D.C.
dc.contributor.authorOtt F.
dc.contributor.authorAuch A.F.
dc.contributor.authorSchmid R.
dc.contributor.authorHuson D.H.
dc.date.accessioned2019-11-08T00:55:00Z
dc.date.available2019-11-08T00:55:00Z
dc.date.issued2008
dc.identifier.citationRichter D.C., Ott F., Auch A.F., Schmid R., Huson D.H. (2008). MetaSim - A sequencing simulator for genomics and metagenomics. PLoS ONE 3 (10) : e3373. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0003373
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161847
dc.description.abstractBackground: The new research field of metagenomics is providing exciting insights into various, previously unclassified ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in public databases. There is great need for specialized software solutions and statistical methods for dealing with complex metagenome data sets. Methodology/Principal Findings: To facilitate the development and improvement of metagenomic tools and the planning of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a number of different sequencing technologies. A population sampler optionally produces evolved sequences based on source genomes and a given evolutionary tree. Conclusions/Significance: MetaSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software. � 2008 Richter et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectarticle
dc.subjectcomputer interface
dc.subjectcomputer program
dc.subjectcomputer simulation
dc.subjectgene sequence
dc.subjectgenetic database
dc.subjectgenome analysis
dc.subjectgenomics
dc.subjectmolecular evolution
dc.subjectprogram development
dc.subjectsequence analysis
dc.subjectsimulator
dc.subjectstandardization
dc.subjecttaxonomy
dc.subjecttheoretical model
dc.subjectDatabases, Genetic
dc.subjectGenomics
dc.subjectModels, Theoretical
dc.subjectUser-Computer Interface
dc.typeArticle
dc.contributor.departmentLIFE SCIENCES INSTITUTE
dc.description.doi10.1371/journal.pone.0003373
dc.description.sourcetitlePLoS ONE
dc.description.volume3
dc.description.issue10
dc.description.pagee3373
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0003373.pdf800.35 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons