Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pcbi.1001045
DC FieldValue
dc.titleA comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt
dc.contributor.authorBuske P.
dc.contributor.authorGalle J.
dc.contributor.authorBarker N.
dc.contributor.authorAust G.
dc.contributor.authorClevers H.
dc.contributor.authorLoeffler M.
dc.date.accessioned2019-11-06T09:32:36Z
dc.date.available2019-11-06T09:32:36Z
dc.date.issued2011
dc.identifier.citationBuske P., Galle J., Barker N., Aust G., Clevers H., Loeffler M. (2011). A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Computational Biology 7 (1) : e1001045. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pcbi.1001045
dc.identifier.issn1553734X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161656
dc.description.abstractWe introduce a novel dynamic model of stem cell and tissue organisation in murine intestinal crypts. Integrating the molecular, cellular and tissue level of description, this model links a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition. Using computational simulations we demonstrate that the model is capable of quantitatively describing and predicting the dynamic behaviour of the intestinal tissue during steady state as well as after cell damage and following selective gain or loss of gene function manipulations affecting Wnt- and Notch-signalling. Our simulation results suggest that reversibility and flexibility of cellular decisions are key elements of robust tissue organisation of the intestine. We predict that the tissue should be able to fully recover after complete elimination of cellular subpopulations including subpopulations deemed to be functional stem cells. This challenges current views of tissue stem cell organisation. © 2011 Buske et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectbeta catenin
dc.subjectNotch receptor
dc.subjectWnt protein
dc.subjectNotch receptor
dc.subjectWnt protein
dc.subjectanalytic method
dc.subjectapoptosis
dc.subjectarticle
dc.subjectcalculation
dc.subjectcell damage
dc.subjectcell interaction
dc.subjectcell lineage
dc.subjectcell migration
dc.subjectcell proliferation
dc.subjectcell subpopulation
dc.subjectcontrolled study
dc.subjectgene activity
dc.subjectgene expression
dc.subjectgene function
dc.subjectgene targeting
dc.subjectintestine crypt
dc.subjectmouse
dc.subjectnonhuman
dc.subjectprediction
dc.subjectsimulation
dc.subjectstem cell
dc.subjectbiological model
dc.subjectcytology
dc.subjectintestine
dc.subjectmetabolism
dc.subjectsignal transduction
dc.subjectMurinae
dc.subjectApoptosis
dc.subjectCell Proliferation
dc.subjectIntestines
dc.subjectModels, Biological
dc.subjectReceptors, Notch
dc.subjectSignal Transduction
dc.subjectStem Cells
dc.subjectWnt Proteins
dc.typeArticle
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.1371/journal.pcbi.1001045
dc.description.sourcetitlePLoS Computational Biology
dc.description.volume7
dc.description.issue1
dc.description.pagee1001045
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pcbi_1001045.pdf1.05 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons