Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0154280
DC FieldValue
dc.titleSar1, a novel regulator of ER-mitochondrial contact sites
dc.contributor.authorAckema K.B.
dc.contributor.authorPrescianotto-Baschong C.
dc.contributor.authorHench J.
dc.contributor.authorWang S.C.
dc.contributor.authorChia Z.H.
dc.contributor.authorMergentaler H.
dc.contributor.authorBard F.
dc.contributor.authorFrank S.
dc.contributor.authorSpang A.
dc.date.accessioned2019-11-06T07:58:34Z
dc.date.available2019-11-06T07:58:34Z
dc.date.issued2016
dc.identifier.citationAckema K.B., Prescianotto-Baschong C., Hench J., Wang S.C., Chia Z.H., Mergentaler H., Bard F., Frank S., Spang A. (2016). Sar1, a novel regulator of ER-mitochondrial contact sites. PLoS ONE 11 (4) : e0154280. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0154280
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161576
dc.description.abstractEndoplasmic reticulum (ER)-mitochondrial contact sites play a pivotal role in exchange of lipids and ions between the two organelles. How size and function of these contact sites are regulated remains elusive. Here we report a previously unanticipated, but conserved role of the small GTPase Sar1 in the regulation of ER-mitochondrial contact site size. Activated Sar1 introduces membrane curvature through its N-terminal amphiphatic helix at the ERmitochondria interphase and thereby reducing contact size. Conversely, the S. cerevisiae N3-Sar1 mutant, in which curvature induction is decreased, caused an increase in ER-mitochondrial contacts. As a consequence, ER tubules are no longer able to mark the prospective scission site on mitochondria, thereby impairing mitochondrial dynamics. Consistently, blocking mitochondrial fusion partially rescued, whereas deletion of the dynamin-like protein enhanced the phenotype in the sar1D32G mutant. We conclude that Sar1 regulates the size of ER-mitochondria contact sites through its effects on membrane curvature. © 2016 Ackema et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectaspartic acid
dc.subjectdynamin
dc.subjectglycine
dc.subjectguanosine triphosphatase
dc.subjectmutant protein
dc.subjectregulator protein
dc.subjectSar1 protein
dc.subjectunclassified drug
dc.subjectCaenorhabditis elegans protein
dc.subjectdynamin
dc.subjectdynamin-related protein 1, C elegans
dc.subjectguanosine triphosphatase
dc.subjectmonomeric guanine nucleotide binding protein
dc.subjectSaccharomyces cerevisiae protein
dc.subjectSar1 protein, C elegans
dc.subjectSAR1 protein, S cerevisiae
dc.subjectSAR1A protein, human
dc.subjectsmall interfering RNA
dc.subjectvesicular transport protein
dc.subjectamino terminal sequence
dc.subjectArticle
dc.subjectbinding site
dc.subjectcell fusion
dc.subjectcontrolled study
dc.subjectendoplasmic reticulum
dc.subjectendoplasmic reticulum membrane
dc.subjectenzyme activation
dc.subjectenzyme activity
dc.subjectenzyme regulation
dc.subjectinterphase
dc.subjectmembrane structure
dc.subjectmitochondrial dynamics
dc.subjectmitochondrial membrane
dc.subjectmitochondrion
dc.subjectnonhuman
dc.subjectphenotype
dc.subjectprotein depletion
dc.subjectregulatory mechanism
dc.subjectSaccharomyces cerevisiae
dc.subjectsar1D32G gene
dc.subjectamino acid substitution
dc.subjectanimal
dc.subjectantagonists and inhibitors
dc.subjectCaenorhabditis elegans
dc.subjectchemistry
dc.subjectconserved sequence
dc.subjectendoplasmic reticulum
dc.subjectgene expression regulation
dc.subjectgenetics
dc.subjectHeLa cell line
dc.subjecthuman
dc.subjectintracellular membrane
dc.subjection transport
dc.subjectlipid metabolism
dc.subjectmetabolism
dc.subjectmitochondrion
dc.subjectmutation
dc.subjectsignal transduction
dc.subjectultrastructure
dc.subjectAmino Acid Substitution
dc.subjectAnimals
dc.subjectCaenorhabditis elegans
dc.subjectCaenorhabditis elegans Proteins
dc.subjectConserved Sequence
dc.subjectDynamins
dc.subjectEndoplasmic Reticulum
dc.subjectGene Expression Regulation
dc.subjectGTP Phosphohydrolases
dc.subjectHeLa Cells
dc.subjectHumans
dc.subjectIntracellular Membranes
dc.subjectIon Transport
dc.subjectLipid Metabolism
dc.subjectMitochondria
dc.subjectMitochondrial Dynamics
dc.subjectMonomeric GTP-Binding Proteins
dc.subjectMutation
dc.subjectRNA, Small Interfering
dc.subjectSaccharomyces cerevisiae
dc.subjectSaccharomyces cerevisiae Proteins
dc.subjectSignal Transduction
dc.subjectVesicular Transport Proteins
dc.typeArticle
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.1371/journal.pone.0154280
dc.description.sourcetitlePLoS ONE
dc.description.volume11
dc.description.issue4
dc.description.pagee0154280
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0154280.pdf7.54 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons