Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0103485
DC FieldValue
dc.titleA systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells
dc.contributor.authorMehta A.
dc.contributor.authorVerma V.
dc.contributor.authorNandihalli M.
dc.contributor.authorRamachandra C.J.A.
dc.contributor.authorSequiera G.L.
dc.contributor.authorSudibyo Y.
dc.contributor.authorChung Y.
dc.contributor.authorSun W.
dc.contributor.authorShim W.
dc.date.accessioned2019-11-05T00:34:53Z
dc.date.available2019-11-05T00:34:53Z
dc.date.issued2014
dc.identifier.citationMehta A., Verma V., Nandihalli M., Ramachandra C.J.A., Sequiera G.L., Sudibyo Y., Chung Y., Sun W., Shim W. (2014). A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells. PLoS ONE 9 (7) : e103485. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0103485
dc.identifier.issn1932-6203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161396
dc.description.abstractGenetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC). In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA) based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA) recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine. © 2014 Mehta et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subject1 [2 (6 methyl 2 pyridyl)ethyl] 4 (4 methylsulfonylaminobenzoyl)piperidine
dc.subjectadrenergic receptor
dc.subjectcalcium channel
dc.subjectisoprenaline
dc.subjectmessenger RNA
dc.subjectnifedipine
dc.subjectpotassium channel
dc.subjectsodium channel
dc.subjectsodium ion
dc.subjectsotalol
dc.subjecttetrodotoxin
dc.subjectcarbachol
dc.subjectcardiotonic agent
dc.subjectcholinergic receptor stimulating agent
dc.subjection channel
dc.subjectisoprenaline
dc.subjectmessenger RNA
dc.subjectoctamer transcription factor 4
dc.subjectstage specific embryo antigen
dc.subjectstage-specific embryonic antigen-4
dc.subjectadult
dc.subjectanimal experiment
dc.subjectanimal tissue
dc.subjectarticle
dc.subjectcell differentiation
dc.subjectcontrolled study
dc.subjectgene expression
dc.subjectheart
dc.subjectheart contraction
dc.subjectheart muscle cell
dc.subjecthuman
dc.subjecthuman cell
dc.subjectin vitro study
dc.subjectmale
dc.subjectmesoderm
dc.subjectmiddle aged
dc.subjectmouse
dc.subjectnonhuman
dc.subjectnuclear reprogramming
dc.subjectpluripotent stem cell
dc.subjectQT prolongation
dc.subjectskin fibroblast
dc.subjectsodium transport
dc.subjecttissue differentiation
dc.subjectcell culture
dc.subjectcell reprogramming technique
dc.subjectconfocal microscopy
dc.subjectcytology
dc.subjectdrug effects
dc.subjectevaluation study
dc.subjectfibroblast
dc.subjectgenetics
dc.subjectmembrane potential
dc.subjectmetabolism
dc.subjectnuclear reprogramming
dc.subjectphysiology
dc.subjectpluripotent stem cell
dc.subjectprocedures
dc.subjectreverse transcription polymerase chain reaction
dc.subjectCarbachol
dc.subjectCardiotonic Agents
dc.subjectCell Differentiation
dc.subjectCells, Cultured
dc.subjectCellular Reprogramming
dc.subjectCellular Reprogramming Techniques
dc.subjectCholinergic Agonists
dc.subjectFibroblasts
dc.subjectGene Expression
dc.subjectHumans
dc.subjectInduced Pluripotent Stem Cells
dc.subjectIon Channels
dc.subjectIsoproterenol
dc.subjectMale
dc.subjectMembrane Potentials
dc.subjectMicroscopy, Confocal
dc.subjectMiddle Aged
dc.subjectMyocytes, Cardiac
dc.subjectOctamer Transcription Factor-3
dc.subjectPluripotent Stem Cells
dc.subjectReverse Transcriptase Polymerase Chain Reaction
dc.subjectRNA, Messenger
dc.subjectStage-Specific Embryonic Antigens
dc.typeArticle
dc.contributor.departmentPHYSIOLOGY
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1371/journal.pone.0103485
dc.description.sourcetitlePLoS ONE
dc.description.volume9
dc.description.issue7
dc.description.pagee103485
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0103485.pdf13.01 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons