Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0106129
DC FieldValue
dc.titleZebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling
dc.contributor.authorLai J.-G.
dc.contributor.authorTsai S.-M.
dc.contributor.authorTu H.-C.
dc.contributor.authorChen W.-C.
dc.contributor.authorKou F.-J.
dc.contributor.authorLu J.-W.
dc.contributor.authorWang H.-D.
dc.contributor.authorHuang C.-L.
dc.contributor.authorYuh C.-H.
dc.date.accessioned2019-11-05T00:33:06Z
dc.date.available2019-11-05T00:33:06Z
dc.date.issued2014
dc.identifier.citationLai J.-G., Tsai S.-M., Tu H.-C., Chen W.-C., Kou F.-J., Lu J.-W., Wang H.-D., Huang C.-L., Yuh C.-H. (2014). Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PLoS ONE 9 (8) : e106129. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0106129
dc.identifier.issn1932-6203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161385
dc.description.abstractThe WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1 /vegfr2 ) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. © 2014 Lai et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectantisense oligonucleotide
dc.subjectmessenger RNA
dc.subjectphosphatidylinositol 3 kinase
dc.subjectphosphatidylinositol 4 phosphate 3 kinase
dc.subjectprotein kinase B
dc.subjectprotein kinase WNK1
dc.subjectprotein kinase WNK1a
dc.subjectprotein kinase WNK1b
dc.subjectunclassified drug
dc.subjectvasculotropin
dc.subjectvasculotropin receptor 2
dc.subjectvasculotropin receptor 3
dc.subjectphosphatidylinositol 3 kinase
dc.subjectprotein kinase B
dc.subjectprotein serine threonine kinase
dc.subjectvasculotropin A
dc.subjectvasculotropin receptor 2
dc.subjectvasculotropin receptor 3
dc.subjectVEGFR-2 protein, zebrafish
dc.subjectzebrafish protein
dc.subjectadult
dc.subjectamino acid sequence
dc.subjectangiogenesis
dc.subjectanimal experiment
dc.subjectarticle
dc.subjectcontrolled study
dc.subjectdown regulation
dc.subjectembryo
dc.subjectenzyme activation
dc.subjectenzyme activity
dc.subjectenzyme phosphorylation
dc.subjectfemale
dc.subjectgene expression regulation
dc.subjectgene silencing
dc.subjectin situ hybridization
dc.subjectintracellular signaling
dc.subjectnonhuman
dc.subjectnucleotide sequence
dc.subjectprotein expression
dc.subjectprotein function
dc.subjectprotein localization
dc.subjectquantitative analysis
dc.subjectreverse transcription polymerase chain reaction
dc.subjectRNA sequence
dc.subjecttranscription regulation
dc.subjecttransgenic zebrafish
dc.subjectwild type
dc.subjectangiogenesis
dc.subjectanimal
dc.subjectmetabolism
dc.subjectneovascularization (pathology)
dc.subjectphosphorylation
dc.subjectphysiology
dc.subjectsignal transduction
dc.subjectzebra fish
dc.subjectAnimals
dc.subjectNeovascularization, Pathologic
dc.subjectNeovascularization, Physiologic
dc.subjectPhosphatidylinositol 3-Kinases
dc.subjectPhosphorylation
dc.subjectProtein-Serine-Threonine Kinases
dc.subjectProto-Oncogene Proteins c-akt
dc.subjectSignal Transduction
dc.subjectVascular Endothelial Growth Factor A
dc.subjectVascular Endothelial Growth Factor Receptor-2
dc.subjectVascular Endothelial Growth Factor Receptor-3
dc.subjectZebrafish
dc.subjectZebrafish Proteins
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1371/journal.pone.0106129
dc.description.sourcetitlePLoS ONE
dc.description.volume9
dc.description.issue8
dc.description.pagee106129
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0106129.pdf16.6 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons