Please use this identifier to cite or link to this item:
https://doi.org/10.37256/cm.000247.84-101
DC Field | Value | |
---|---|---|
dc.title | Nonlinear Partial Differential Equations Arising from Prescribed Curvature Problems | |
dc.contributor.author | Leung Man Chun | |
dc.date.accessioned | 2019-07-29T01:23:30Z | |
dc.date.available | 2019-07-29T01:23:30Z | |
dc.date.issued | 2020-03-28 | |
dc.identifier.citation | Leung Man Chun (2020-03-28). Nonlinear Partial Differential Equations Arising from Prescribed Curvature Problems. Contemporary Mathematics 1 (2) : 84-101. ScholarBank@NUS Repository. https://doi.org/10.37256/cm.000247.84-101 | |
dc.identifier.issn | 2705-1064 | |
dc.identifier.issn | 2705-1056 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/157119 | |
dc.description.abstract | We consider two prominent nonlinear partial differential equations (nonlinear PDE) linked to the prescribed curvature problems, namely, the Minkowski problem and the Kazdan-Warner/Nirenberg problem (prescribed scalar curvature problem). This article addresses some of the modern techniques in analysis used to draw out a number of the profound features in these equations. | |
dc.language.iso | en | |
dc.publisher | Universal Wiser Publisher | |
dc.source | Elements | |
dc.subject | blow-up | |
dc.subject | Monge-Ampére Equation | |
dc.subject | optimal transport problem | |
dc.type | Article | |
dc.date.updated | 2019-07-27T02:50:17Z | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.37256/cm.000247.84-101 | |
dc.description.sourcetitle | Contemporary Mathematics | |
dc.description.volume | 1 | |
dc.description.issue | 2 | |
dc.description.page | 84-101 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
LEUNG-Curvature PDE.pdf | 134.25 kB | Adobe PDF | OPEN | Pre-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.