Please use this identifier to cite or link to this item: https://doi.org/10.1109/ISCAS.2016.7527390
DC FieldValue
dc.titleA Low-voltage, Low power STDP Synapse implementation using Domain-Wall Magnets for Spiking Neural Networks
dc.contributor.authorNarasimman, Govind
dc.contributor.authorRoy, Subhrajit
dc.contributor.authorFong, Xuanyao
dc.contributor.authorRoy, Kaushik
dc.contributor.authorChang, Chip-Hong
dc.contributor.authorBasu, Arindam
dc.date.accessioned2019-07-03T03:52:31Z
dc.date.available2019-07-03T03:52:31Z
dc.date.issued2016-01-01
dc.identifier.citationNarasimman, Govind, Roy, Subhrajit, Fong, Xuanyao, Roy, Kaushik, Chang, Chip-Hong, Basu, Arindam (2016-01-01). A Low-voltage, Low power STDP Synapse implementation using Domain-Wall Magnets for Spiking Neural Networks. IEEE International Symposium on Circuits and Systems (ISCAS) 2016-July : 914-917. ScholarBank@NUS Repository. https://doi.org/10.1109/ISCAS.2016.7527390
dc.identifier.isbn9781479953400
dc.identifier.issn0271-4302
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/156200
dc.description.abstract© 2016 IEEE. Online, real-time learning in neuromorphic circuits have been implemented through variants of Spike Time Dependent Plasticity (STDP). Current implementations have used either floating-gate devices or memristors to implement such learning synapses together with non-volatile storage. However, these approaches require high voltages (≈ 3-12V) for weight update and entail high energy for learning (≈ 4-30pJ/write). We present a domain wall memory based low-voltage, low-energy STDP synapse that can operate with a power supply as low as 0.8V and update the weight at ≈ 40fJ/write. Device level simulations are performed to prove its feasibility. Its use in associative learning is also demonstrated by using neurons with dendritic branches to classify spike patterns from MNIST dataset.
dc.publisherIEEE
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering
dc.subjectPLASTICITY
dc.typeConference Paper
dc.date.updated2019-07-03T03:41:15Z
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1109/ISCAS.2016.7527390
dc.description.sourcetitleIEEE International Symposium on Circuits and Systems (ISCAS)
dc.description.volume2016-July
dc.description.page914-917
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Narasimman et al. - 2016 - A low-voltage, low power STDP synapse implementation using domain-wall magnets for spiking neural net.pdfPublished version405.08 kBAdobe PDF

CLOSED

None

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.