Please use this identifier to cite or link to this item: https://doi.org/10.1214/17-BA1093
DC FieldValue
dc.titleModeling Population Structure Under Hierarchical Dirichlet Processes
dc.contributor.authorELLIOTT, LLOYD T
dc.contributor.authorDE IORIO, MARIA
dc.contributor.authorFAVARO, STEFANO
dc.contributor.authorADHIKARI, KAUSTUBH
dc.contributor.authorTEH, YEE WHYE
dc.date.accessioned2019-06-07T01:55:18Z
dc.date.available2019-06-07T01:55:18Z
dc.date.issued2019-06-01
dc.identifier.citationELLIOTT, LLOYD T, DE IORIO, MARIA, FAVARO, STEFANO, ADHIKARI, KAUSTUBH, TEH, YEE WHYE (2019-06-01). Modeling Population Structure Under Hierarchical Dirichlet Processes. BAYESIAN ANALYSIS 14 (2) : 313-339. ScholarBank@NUS Repository. https://doi.org/10.1214/17-BA1093
dc.identifier.issn1931-6690
dc.identifier.issn1936-0975
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155349
dc.description.abstractWe propose a Bayesian nonparametric model to infer population admixture, extending the Hierarchical Dirichlet Process to allow for correlation between loci due to Linkage Disequilibrium. Given multilocus genotype data from a sample of individuals, the model allows inferring classifying individuals as unadmixed or admixed, inferring the number of subpopulations ancestral to an admixed population and the population of origin of chromosomal regions. Our model does not assume any specific mutation process and can be applied to most of the commonly used genetic markers. We present a MCMC algorithm to perform posterior inference from the model and discuss methods to summarise the MCMC output for the analysis of population admixture. We demonstrate the performance of the proposed model in simulations and in a real application, using genetic data from the EDAR gene, which is considered to be ancestry-informative due to well-known variations in allele frequency as well as phenotypic effects across ancestry. The structure analysis of this dataset leads to the identification of a rare haplotype in Europeans.
dc.language.isoen
dc.publisherINT SOC BAYESIAN ANALYSIS
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectMathematics, Interdisciplinary Applications
dc.subjectStatistics & Probability
dc.subjectMathematics
dc.subjectadmixture modeling
dc.subjectBayesian nonparametrics
dc.subjecthierarchical Dirichlet process
dc.subjectlinkage disequilibrium
dc.subjectpopulation stratification
dc.subjectsingle nucleotide polymorphism data
dc.subjectMCMC algorithm
dc.subjectMONTE-CARLO METHODS
dc.subjectBAYESIAN-ANALYSIS
dc.subjectGENETIC-STRUCTURE
dc.subjectINFERENCE
dc.subjectDIFFERENTIATION
dc.subjectADMIXTURE
dc.subjectANCESTRY
dc.subjectCRITERIA
dc.subjectDISEASE
dc.subjectHAIR
dc.typeArticle
dc.date.updated2019-06-03T23:56:11Z
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.contributor.departmentYALE-NUS COLLEGE
dc.description.doi10.1214/17-BA1093
dc.description.sourcetitleBAYESIAN ANALYSIS
dc.description.volume14
dc.description.issue2
dc.description.page313-339
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1503.08278v1.pdf842.5 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.