Please use this identifier to cite or link to this item: https://doi.org/10.3842/SIGMA.2018.038
DC FieldValue
dc.titleHomomorphisms from specht modules to signed young permutation modules
dc.contributor.authorLim, KJ
dc.contributor.authorTan, KM
dc.date.accessioned2019-06-07T01:32:50Z
dc.date.available2019-06-07T01:32:50Z
dc.date.issued2018-04-25
dc.identifier.citationLim, KJ, Tan, KM (2018-04-25). Homomorphisms from specht modules to signed young permutation modules. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 14 : 21-. ScholarBank@NUS Repository. https://doi.org/10.3842/SIGMA.2018.038
dc.identifier.issn1815-0659
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155269
dc.description.abstract© 2018, Institute of Mathematics. All rights reserved. We construct a class ΘR of homomorphisms from a Specht module (formula presented) to a signed permutation module Mℤ(α|β) which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ Homℤϭn (formula presented) lies in the -span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which (formula presented) - a subset of HomFϭn (formula presented) induced by Θsstd - is linearly independent, and show that it is a basis for HomFϭn (formula presented) when Fϭn is semisimple.
dc.publisherSIGMA (Symmetry, Integrability and Geometry: Methods and Application)
dc.sourceElements
dc.subjectmath.RT
dc.subjectmath.RT
dc.subject20C30
dc.typeArticle
dc.date.updated2019-06-03T09:17:09Z
dc.contributor.departmentDEPT OF MATHEMATICS
dc.description.doi10.3842/SIGMA.2018.038
dc.description.sourcetitleSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
dc.description.volume14
dc.description.page21-
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
signedperm.pdf476.5 kBAdobe PDF

OPEN

Post-printView/Download

SCOPUSTM   
Citations

1
checked on Jan 13, 2022

Page view(s)

215
checked on Jan 20, 2022

Download(s)

10
checked on Jan 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.