Please use this identifier to cite or link to this item: https://doi.org/10.3842/SIGMA.2018.038
DC FieldValue
dc.titleHomomorphisms from specht modules to signed young permutation modules
dc.contributor.authorLim, KJ
dc.contributor.authorTan, KM
dc.date.accessioned2019-06-07T01:32:50Z
dc.date.available2019-06-07T01:32:50Z
dc.date.issued2018-04-25
dc.identifier.citationLim, KJ, Tan, KM (2018-04-25). Homomorphisms from specht modules to signed young permutation modules. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 14 : 21-. ScholarBank@NUS Repository. https://doi.org/10.3842/SIGMA.2018.038
dc.identifier.issn1815-0659
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155269
dc.description.abstract© 2018, Institute of Mathematics. All rights reserved. We construct a class ΘR of homomorphisms from a Specht module (formula presented) to a signed permutation module Mℤ(α|β) which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ Homℤϭn (formula presented) lies in the -span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which (formula presented) - a subset of HomFϭn (formula presented) induced by Θsstd - is linearly independent, and show that it is a basis for HomFϭn (formula presented) when Fϭn is semisimple.
dc.publisherSIGMA (Symmetry, Integrability and Geometry: Methods and Application)
dc.sourceElements
dc.subjectmath.RT
dc.subjectmath.RT
dc.subject20C30
dc.typeArticle
dc.date.updated2019-06-03T09:17:09Z
dc.contributor.departmentMATHEMATICS
dc.description.doi10.3842/SIGMA.2018.038
dc.description.sourcetitleSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
dc.description.volume14
dc.description.page21-
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
signedperm.pdf476.5 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.