Please use this identifier to cite or link to this item: https://doi.org/10.1002/pip.3097
DC FieldValue
dc.titleApproaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD
dc.contributor.authorNandakumar, Naomi
dc.contributor.authorRodriguez, John
dc.contributor.authorKluge, Thomas
dc.contributor.authorGrosse, Thomas
dc.contributor.authorFondop, Lauretta
dc.contributor.authorPadhamnath, Pradeep
dc.contributor.authorBalaji, Nagarajan
dc.contributor.authorKoenig, Marcel
dc.contributor.authorDuttagupta, Shubham
dc.date.accessioned2019-06-03T04:31:38Z
dc.date.available2019-06-03T04:31:38Z
dc.date.issued2019-02-01
dc.identifier.citationNandakumar, Naomi, Rodriguez, John, Kluge, Thomas, Grosse, Thomas, Fondop, Lauretta, Padhamnath, Pradeep, Balaji, Nagarajan, Koenig, Marcel, Duttagupta, Shubham (2019-02-01). Approaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD. PROGRESS IN PHOTOVOLTAICS 27 (2) : 107-112. ScholarBank@NUS Repository. https://doi.org/10.1002/pip.3097
dc.identifier.issn1062-7995
dc.identifier.issn1099-159X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155040
dc.description.abstract© 2018 John Wiley & Sons, Ltd. We present n-type bifacial solar cells with a rear interfacial SiO x /n + :poly-Si passivating contact (‘monoPoly’ cells) where the interfacial oxide and n + :poly-Si layers are fabricated using an industrial inline plasma-enhanced chemical vapor deposition (PECVD) tool. We demonstrate outstanding passivation quality with dark saturation current density (J 0 ) values of approximately 3 fA/cm 2 and implied open-circuit voltage (iV oc ) of 730 mV at 1-sun conditions after firing in an industrial belt furnace. Using a simple solar cell process flow that can be easily adapted for mass production, a peak cell efficiency of 22.8% with a cell open circuit voltage (V oc ) of 696 mV is achieved on large-area, screen-printed, Czochralski-silicon (Cz-Si) solar cells using commercial fire-through metal pastes.
dc.language.isoen
dc.publisherWILEY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectindustrial firing
dc.subjectindustrial process
dc.subjectlarge-area
dc.subjectpassivated contacts
dc.subjectPECVD
dc.subjectscreen-printed
dc.subjectsilicon wafer
dc.subjectsolar cells
dc.subjectSI SOLAR-CELLS
dc.subjectEFFICIENCY
dc.subjectRECOMBINATION
dc.subjectTRANSISTORS
dc.typeArticle
dc.date.updated2019-06-03T01:36:35Z
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.description.doi10.1002/pip.3097
dc.description.sourcetitlePROGRESS IN PHOTOVOLTAICS
dc.description.volume27
dc.description.issue2
dc.description.page107-112
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Main Document_PDF.pdf889.07 kBAdobe PDF

OPEN

Pre-printView/Download

SCOPUSTM   
Citations

60
checked on Nov 23, 2022

Page view(s)

375
checked on Nov 24, 2022

Download(s)

5
checked on Nov 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.