Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-06217-x
DC FieldValue
dc.titleFinding any Waldo with zero-shot invariant and efficient visual search
dc.contributor.authorZhang M.
dc.contributor.authorFeng J.
dc.contributor.authorMa K.T.
dc.contributor.authorLim J.H.
dc.contributor.authorZhao Q.
dc.contributor.authorKreiman G.
dc.date.accessioned2019-03-08T09:04:31Z
dc.date.available2019-03-08T09:04:31Z
dc.date.issued2018
dc.identifier.citationZhang M., Feng J., Ma K.T., Lim J.H., Zhao Q., Kreiman G. (2018). Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications 9 (1) : 3730. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-06217-x
dc.identifier.issn20411723
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/152122
dc.description.abstractSearching for a target object in a cluttered scene constitutes a fundamental challenge in daily vision. Visual search must be selective enough to discriminate the target from distractors, invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration of the image, and must generalize to locate novel target objects with zero-shot training. Previous work on visual search has focused on searching for perfect matches of a target after extensive category-specific training. Here, we show for the first time that humans can efficiently and invariantly search for natural objects in complex scenes. To gain insight into the mechanisms that guide visual search, we propose a biologically inspired computational model that can locate targets without exhaustive sampling and which can generalize to novel objects. The model provides an approximation to the mechanisms integrating bottom-up and top-down signals during search in natural scenes. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.contributor.departmentINSTITUTE OF SYSTEMS SCIENCE
dc.description.doi10.1038/s41467-018-06217-x
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page3730
dc.published.statepublished
dc.grant.idR01EY026025
dc.grant.idCCF-1231216
dc.grant.id1335h00098
dc.grant.fundingagencyNIH
dc.grant.fundingagencyNSF
dc.grant.fundingagencyA*STAR JCO
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41467-018-06217-x.pdf2.24 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.