Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-05662-y
DC FieldValue
dc.titleDirect observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit
dc.contributor.authorWang H.
dc.contributor.authorLiu Z.R.
dc.contributor.authorYoong H.Y.
dc.contributor.authorPaudel T.R.
dc.contributor.authorXiao J.X.
dc.contributor.authorGuo R.
dc.contributor.authorLin W.N.
dc.contributor.authorYang P.
dc.contributor.authorWang J.
dc.contributor.authorChow G.M.
dc.contributor.authorVenkatesan T.
dc.contributor.authorTsymbal E.Y.
dc.contributor.authorTian H.
dc.contributor.authorChen J.S.
dc.date.accessioned2019-03-08T01:10:23Z
dc.date.available2019-03-08T01:10:23Z
dc.date.issued2018-12-01
dc.identifier.citationWang H., Liu Z.R., Yoong H.Y., Paudel T.R., Xiao J.X., Guo R., Lin W.N., Yang P., Wang J., Chow G.M., Venkatesan T., Tsymbal E.Y., Tian H., Chen J.S. (2018-12-01). Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nature Communications 9 (1) : 3319. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-05662-y
dc.identifier.issn2041-1723
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/152070
dc.description.abstractOut-of-plane ferroelectricity with a high transition temperature in nanometer-scale films is required to miniaturize electronic devices. Direct visualization of stable ferroelectric polarization and its switching behavior in atomically thick films is critical for achieving this goal. Here, ferroelectric order at room temperature in the two-dimensional limit is demonstrated in tetragonal BiFeO3 ultrathin films. Using aberration-corrected scanning transmission electron microscopy, we directly observed robust out-of-plane spontaneous polarization in one-unit-cell-thick BiFeO3 films. High-resolution piezoresponse force microscopy measurements show that the polarization is stable and switchable, whereas a tunneling electroresistance effect of up to 370% is achieved in BiFeO3 films. Based on first-principles calculations and Kelvin probe force microscopy measurements, we explain the mechanism of polarization stabilization by the ionic displacements in oxide electrode and the surface charges. Our results indicate that critical thickness for ferroelectricity in the BiFeO3 film is virtually absent, making it a promising candidate for high-density nonvolatile memories. � 2018, The Author(s).
dc.publisherNature Publishing Group
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/s41467-018-05662-y
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page3319
dc.published.statepublished
dc.grant.idNMRC/TCR/011-NUHS/2014
dc.grant.idNMRC/CG/013/2013
dc.grant.idNMRC/CSA-INV/0005/2016
dc.grant.fundingagencySingapore Ministry of Health抯 National Medical Research Council (NMRC)
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41467-018-05662-y.pdf3.4 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.