Please use this identifier to cite or link to this item:
Title: Two-Dimensional MoxW1?xS2 Graded Alloys: Growth and Optical Properties
Authors: Bogaert K.
Liu S. 
Liu T. 
Guo N. 
Zhang C. 
Grade?ak S.
Garaj S. 
Issue Date: 2018
Publisher: Nature Publishing Group
Citation: Bogaert K., Liu S., Liu T., Guo N., Zhang C., Grade?ak S., Garaj S. (2018). Two-Dimensional MoxW1?xS2 Graded Alloys: Growth and Optical Properties. Scientific Reports 8 (1) : 12889. ScholarBank@NUS Repository.
Abstract: Two-dimensional (2D) transition metal dichalcogenides can be alloyed by substitution at the metal atom site with negligible effect on lattice strain, but with significant influence on optical and electrical properties. In this work, we establish the relationship between composition and optical properties of the MoxW1?xS2 alloy by investigating the effect of continuously-varying composition on photoluminescence intensity. We developed a new process for growth of two-dimensional MoxW1?xS2 alloys that span nearly the full composition range along a single crystal, thus avoiding any sample-related heterogeneities. The graded alloy crystals were grown using a diffusion-based chemical vapor deposition (CVD) method that starts by synthesizing a WS2 crystal with a graded point defect distribution, followed by Mo alloying in the second stage. We show that point defects promote the diffusion and alloying, as confirmed by Raman and photoluminescence measurements, density functional theory calculations of the reaction path, and observation that no alloying occurs in CVD-treated exfoliated crystals with low defect density. We observe a significant dependence of the optical quantum yield as a function of the alloy composition reaching the maximum intensity for the equicompositional Mo0.5W0.5S2 alloy. Furthermore, we map the growth-induced strain distribution within the alloyed crystals to decouple composition and strain effects on optical properties: at the same composition, we observe significant decrease in quantum yield with induced strain. Our approach is generally applicable to other 2D materials as well as the optimization of other composition-dependent properties within a single crystal. © 2018, The Author(s).
Source Title: Scientific Reports
ISSN: 20452322
DOI: 10.1038/s41598-018-31220-z
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41598-018-31220-z.pdf1.96 MBAdobe PDF



Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.