Please use this identifier to cite or link to this item:
https://doi.org/10.1038/gim.2017.26
DC Field | Value | |
---|---|---|
dc.title | Using high-resolution variant frequencies to empower clinical genome interpretation | |
dc.contributor.author | Whiffin N. | |
dc.contributor.author | Minikel E. | |
dc.contributor.author | Walsh R. | |
dc.contributor.author | O'Donnell-Luria A.H. | |
dc.contributor.author | Karczewski K. | |
dc.contributor.author | Ing A.Y. | |
dc.contributor.author | Barton P.J.R. | |
dc.contributor.author | Funke B. | |
dc.contributor.author | Cook S.A. | |
dc.contributor.author | Macarthur D. | |
dc.contributor.author | Ware J.S. | |
dc.date.accessioned | 2019-01-08T09:00:53Z | |
dc.date.available | 2019-01-08T09:00:53Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Whiffin N., Minikel E., Walsh R., O'Donnell-Luria A.H., Karczewski K., Ing A.Y., Barton P.J.R., Funke B., Cook S.A., Macarthur D., Ware J.S. (2017). Using high-resolution variant frequencies to empower clinical genome interpretation. Genetics in Medicine 19 (10) : 1151-1158. ScholarBank@NUS Repository. https://doi.org/10.1038/gim.2017.26 | |
dc.identifier.issn | 10983600 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/150629 | |
dc.description.abstract | PurposeWhole-exome and whole-genome sequencing have transformed the discovery of genetic variants that cause human Mendelian disease, but discriminating pathogenic from benign variants remains a daunting challenge. Rarity is recognized as a necessary, although not sufficient, criterion for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), provide an unprecedented opportunity to obtain robust frequency estimates even for very rare variants.MethodsWe present a statistical framework for the frequency-based filtering of candidate disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference datasets.ResultsUsing the example of cardiomyopathy, we show that our approach reduces by two-thirds the number of candidate variants under consideration in the average exome, without removing true pathogenic variants (false-positive rate<0.001).ConclusionWe outline a statistically robust framework for assessing whether a variant is "too common" to be causative for a Mendelian disorder of interest. We present precomputed allele frequency cutoffs for all variants in the ExAC dataset. | |
dc.publisher | Nature Publishing Group | |
dc.source | Scopus | |
dc.subject | allele frequency | |
dc.subject | clinical genomics | |
dc.subject | ExAC | |
dc.subject | inherited cardiovascular conditions | |
dc.subject | variant interpretation | |
dc.type | Article | |
dc.contributor.department | DUKE-NUS MEDICAL SCHOOL | |
dc.description.doi | 10.1038/gim.2017.26 | |
dc.description.sourcetitle | Genetics in Medicine | |
dc.description.volume | 19 | |
dc.description.issue | 10 | |
dc.description.page | 1151-1158 | |
dc.description.coden | GEMEF | |
dc.grant.id | NIGMS | |
dc.grant.id | 4T32GM007748 | |
dc.grant.id | F31 | |
dc.grant.id | AI122592-01A1 | |
dc.grant.id | NIDDK | |
dc.grant.id | R01GM104371 | |
dc.grant.id | U54DK105566 | |
dc.grant.id | 11 CVD-01 | |
dc.grant.id | NIH | |
dc.grant.id | 107469/Z/15/Z | |
dc.grant.fundingagency | National Institute of General Medical Sciences | |
dc.grant.fundingagency | NRSA, Israel National Road Safety Authority | |
dc.grant.fundingagency | NRSA, Israel National Road Safety Authority | |
dc.grant.fundingagency | NRSA, Israel National Road Safety Authority | |
dc.grant.fundingagency | National Institute of Diabetes and Digestive and Kidney Diseases | |
dc.grant.fundingagency | NIH, National Institutes of Health | |
dc.grant.fundingagency | NIH, National Institutes of Health | |
dc.grant.fundingagency | Fondation Leducq | |
dc.grant.fundingagency | National Institutes of Health | |
dc.grant.fundingagency | Wellcome Trust | |
Appears in Collections: | Elements Staff Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
gim201726.pdf | 336.79 kB | Adobe PDF | OPEN | None | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.