Please use this identifier to cite or link to this item: https://doi.org/10.1093/bioinformatics/btx552
DC FieldValue
dc.titleThree-dimensional cardiovascular imaging-genetics: A mass univariate framework
dc.contributor.authorBiffi C.
dc.contributor.authorDe Marvao A.
dc.contributor.authorAttard M.I.
dc.contributor.authorDawes T.J.W.
dc.contributor.authorWhiffin N.
dc.contributor.authorBai W.
dc.contributor.authorShi W.
dc.contributor.authorFrancis C.
dc.contributor.authorMeyer H.
dc.contributor.authorBuchan R.
dc.contributor.authorCook S.A.
dc.contributor.authorRueckert D.
dc.contributor.authorO'Regan D.P.
dc.date.accessioned2019-01-08T09:00:39Z
dc.date.available2019-01-08T09:00:39Z
dc.date.issued2018
dc.identifier.citationBiffi C., De Marvao A., Attard M.I., Dawes T.J.W., Whiffin N., Bai W., Shi W., Francis C., Meyer H., Buchan R., Cook S.A., Rueckert D., O'Regan D.P. (2018). Three-dimensional cardiovascular imaging-genetics: A mass univariate framework. Bioinformatics 34 (1) : 97-103. ScholarBank@NUS Repository. https://doi.org/10.1093/bioinformatics/btx552
dc.identifier.issn13674803
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/150627
dc.description.abstractMotivation: Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual calculation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportunity for high-throughput mapping of genotype-phenotype associations in three dimensions (3D). Results: High-resolution cardiac magnetic resonance images were automatically segmented in 1124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was used to plot a 3D effect-size map for the association between wall thickness and a set of predictors at each vertex in the mesh. The vertices where a significant effect exists were determined by applying threshold-free cluster enhancement to boost areas of signal with spatial contiguity. Experiments on simulated phenotypic signals and SNP replication show that this approach offers a substantial gain in statistical power for cardiac genotype-phenotype associations while providing good control of the false discovery rate. This framework models the effects of genetic variation throughout the heart and can be automatically applied to large population cohorts. © 2017 The Author.
dc.publisherOxford University Press
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1093/bioinformatics/btx552
dc.description.sourcetitleBioinformatics
dc.description.volume34
dc.description.issue1
dc.description.page97-103
dc.description.codenBOINF
dc.grant.idSGL015/ 1006
dc.grant.idNIHR
dc.grant.idNIHR
dc.grant.idPG/12/27/29489
dc.grant.idSP/10/10/ 28431
dc.grant.idNH/17/1/32725
dc.grant.idRE/13/4/30184
dc.grant.fundingagencyAcademy of Medical Sciences
dc.grant.fundingagencyNational Institute for Health Research
dc.grant.fundingagencyNational Institute for Health Research
dc.grant.fundingagencyBHF, British Heart Foundation
dc.grant.fundingagencyBHF, British Heart Foundation
dc.grant.fundingagencyBHF, British Heart Foundation
dc.grant.fundingagencyBHF, British Heart Foundation
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
btx552.pdf492.28 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.