Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-28557-8_7
DC FieldValue
dc.titleSegmentation of liver tumor using efficient global optimal tree metrics graph cuts
dc.contributor.authorFang R.
dc.contributor.authorZabih R.
dc.contributor.authorRaj A.
dc.contributor.authorChen T.
dc.date.accessioned2018-08-21T04:58:33Z
dc.date.available2018-08-21T04:58:33Z
dc.date.issued2012
dc.identifier.citationFang R., Zabih R., Raj A., Chen T. (2012). Segmentation of liver tumor using efficient global optimal tree metrics graph cuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7029 LNCS : 51-59. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-28557-8_7
dc.identifier.isbn9783642285561
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/146140
dc.description.abstractWe propose a novel approach that applies global optimal tree-metrics graph cuts algorithm on multi-phase contrast enhanced contrast enhanced MRI for liver tumor segmentation. To address the difficulties caused by low contrasted boundaries and high variability in liver tumor segmentation, we first extract a set of features in multi-phase contrast enhanced MRI data and use color-space mapping to reveal spatial-temporal information invisible in MRI intensity images. Then we apply efficient tree-metrics graph cut algorithm on multi-phase contrast enhanced MRI data to obtain global optimal labeling in an unsupervised framework. Finally we use tree-pruning method to reduce the number of available labels for liver tumor segmentation. Experiments on real-world clinical data show encouraging results. This approach can be applied to various medical imaging modalities and organs.
dc.sourceScopus
dc.subjectcolor-space mapping
dc.subjectglobal optimal labeling
dc.subjectliver tumor segmentation
dc.subjectmulti-phase contrast enhanced MRI
dc.subjecttree-metrics graph cuts
dc.typeConference Paper
dc.contributor.departmentOFFICE OF THE PROVOST
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-28557-8_7
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume7029 LNCS
dc.description.page51-59
dc.published.statepublished
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.