Please use this identifier to cite or link to this item: https://doi.org/10.1007/s002530051470
DC FieldValue
dc.titleMechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain
dc.contributor.authorYap, L.F.
dc.contributor.authorLee, Y.K.
dc.contributor.authorPoh, C.L.
dc.date.accessioned2016-11-28T10:18:07Z
dc.date.available2016-11-28T10:18:07Z
dc.date.issued1999
dc.identifier.citationYap, L.F., Lee, Y.K., Poh, C.L. (1999). Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Applied Microbiology and Biotechnology 51 (6) : 833-840. ScholarBank@NUS Repository. https://doi.org/10.1007/s002530051470
dc.identifier.issn01757598
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/131261
dc.description.abstractComamonas testosteroni P15 and its mutant strain E23 can tolerate and utilize phenol as the sole source of carbon and energy at up to 15 mM and 20 mM, respectively. Compared to the wild type P15, mutant E23 showed higher values of K(s) and K(i) but a lower μ(max) value, and had lower phenol hydroxylase and catechol 2,3-dioxygenase activities. Without phenol exposure, mutant E23 demonstrated a two-fold greater amount of cardiolipin than the wild type P15. Upon exposure to phenol, an increase in cardiolipin at the expense of phosphatidylethanolamine was observed in the wild type P15. However, there was no significant difference in major phospholipid contents between mutant E23 cells grown in the presence or absence of phenol. It was noted that the ratio of trans/cis fatty acids of phosphatidylethanolamine and cardiolipin in mutant E23 was 65-70% higher than that in the wild type P15. In the absence of phenol, the degree of saturation of cardiolipin in mutant E23 was 33% higher than that in wild type P15. In contrast to earlier findings, an increase in C 16:1 9trans with a simultaneous decrease in C18:1 11cis instead of C16:1 9cis was observed in specific classes of phospholipids.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s002530051470
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMICROBIOLOGY
dc.description.doi10.1007/s002530051470
dc.description.sourcetitleApplied Microbiology and Biotechnology
dc.description.volume51
dc.description.issue6
dc.description.page833-840
dc.description.codenAMBID
dc.identifier.isiut000081207300016
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

26
checked on Nov 13, 2019

WEB OF SCIENCETM
Citations

25
checked on Nov 13, 2019

Page view(s)

17
checked on Nov 8, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.