Please use this identifier to cite or link to this item:
Title: Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization
Authors: Yu, X. 
Park, S.K.
Lee, Y.H.
Choi, Y.S.
Issue Date: 2013
Citation: Yu, X., Park, S.K., Lee, Y.H., Choi, Y.S. (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. Scientific Online Letters on the Atmosphere 9 (1) : 36-39. ScholarBank@NUS Repository.
Abstract: This study focuses on improving quantitative precipitation forecast (QPF) related to a tropical cyclone by optimal estimation of two parameters of the Kain-Fritsch convective parameterization scheme in a high-resolution regional model - the Weather Research and Forecasting (WRF). The micro-genetic algorithm (GA) is employed for optimization, and a QPF skill score is used as a fitness function. The target parameters include the autoconversion rate (c) and the convective time scale (Tc). An interface between the micro-GA and WRF is developed and applied to an extreme heavy rainfall case in Korea, related to Typhoon Rusa (2002), at a grid spacing of 10 km. To produce the best QPF skill for this tropical cyclone case, the default parameter values are adjusted by significant amount. Our results indicate that the micro-GA is effective to retrieve the optimal parameter values, which are especially important in improving forecast skill of heavy rainfall events. ©2013, the Meteorological Society of Japan.
Source Title: Scientific Online Letters on the Atmosphere
ISSN: 13496476
DOI: 10.2151/sola.2013-009
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Apr 1, 2023


checked on Mar 24, 2023

Page view(s)

checked on Mar 30, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.