Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.solmat.2013.06.046
DC FieldValue
dc.title18.7% Efficient inline-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back
dc.contributor.authorKanti Basu, P.
dc.contributor.authorHameiri, Z.
dc.contributor.authorSarangi, D.
dc.contributor.authorCunnusamy, J.
dc.contributor.authorCarmona, E.
dc.contributor.authorBoreland, M.B.
dc.date.accessioned2016-10-19T08:44:44Z
dc.date.available2016-10-19T08:44:44Z
dc.date.issued2013
dc.identifier.citationKanti Basu, P., Hameiri, Z., Sarangi, D., Cunnusamy, J., Carmona, E., Boreland, M.B. (2013). 18.7% Efficient inline-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back. Solar Energy Materials and Solar Cells 117 : 412-420. ScholarBank@NUS Repository. https://doi.org/10.1016/j.solmat.2013.06.046
dc.identifier.issn09270248
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/128749
dc.description.abstractOne of the critical fabrication processes of silicon wafer solar cells is the emitter formation. Tube based diffusion, using phosphorus oxychloride as the dopant source, is the standard in the photovoltaic industry. Inline-diffusion, using phosphoric acid as a dopant source, is a potentially low-cost alternative; however it typically results in lower solar cell efficiency. This paper presents an improved etch-back process, 'SERIS etch', for inline-diffused emitters, which achieves batch average efficiency of 18.6% using 156 mm pseudo-square industrial-grade p-type Cz mono-silicon wafers with conventional screen-printed metallisation and aluminium back surface field (Al-BSF). The best cell is 18.7% efficient, with an open-circuit voltage of 631 mV and a fill factor of 80.6%. These high efficiencies were achieved by co-optimisation of the emitter dopant profile and the emitter etch-back process. A variety of characterisation techniques, such as scanning electron microscopy, effective lifetime measurement, dopant profile analyser, photo- and electroluminescence images, and current-voltage (dark and illuminated) measurements were employed in this work. © 2013 Elsevier B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.solmat.2013.06.046
dc.sourceScopus
dc.subjectDeep emitter etch-back
dc.subjectDopant profile optimization
dc.subjectIndustrial monocrystalline silicon wafer
dc.subjectInline diffusion
dc.subjectLifetime analysis
dc.subjectSERIS etch
dc.subjectsolar cells
dc.typeArticle
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.description.doi10.1016/j.solmat.2013.06.046
dc.description.sourcetitleSolar Energy Materials and Solar Cells
dc.description.volume117
dc.description.page412-420
dc.description.codenSEMCE
dc.identifier.isiut000325188400064
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.