Please use this identifier to cite or link to this item: https://doi.org/10.1039/c0an00498g
DC FieldValue
dc.titleAnalytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy
dc.contributor.authorMirsaidov, U.
dc.contributor.authorTimashev, S.F.
dc.contributor.authorPolyakov, Y.S.
dc.contributor.authorMisurkin, P.I.
dc.contributor.authorMusaev, I.
dc.contributor.authorPolyakov, S.V.
dc.date.accessioned2016-10-19T08:44:17Z
dc.date.available2016-10-19T08:44:17Z
dc.date.issued2011-02-07
dc.identifier.citationMirsaidov, U., Timashev, S.F., Polyakov, Y.S., Misurkin, P.I., Musaev, I., Polyakov, S.V. (2011-02-07). Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy. Analyst 136 (3) : 570-576. ScholarBank@NUS Repository. https://doi.org/10.1039/c0an00498g
dc.identifier.issn00032654
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/128708
dc.description.abstractThe functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn is a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings. © 2011 The Royal Society of Chemistry.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1039/c0an00498g
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1039/c0an00498g
dc.description.sourcetitleAnalyst
dc.description.volume136
dc.description.issue3
dc.description.page570-576
dc.description.codenANALA
dc.identifier.isiut000286326800023
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.