Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00440-013-0492-1
DC FieldValue
dc.titleSymmetric rearrangements around infinity with applications to Lévy processes
dc.contributor.authorDrewitz, A.
dc.contributor.authorSousi, P.
dc.contributor.authorSun, R.
dc.date.accessioned2016-09-06T05:44:18Z
dc.date.available2016-09-06T05:44:18Z
dc.date.issued2014-04
dc.identifier.citationDrewitz, A., Sousi, P., Sun, R. (2014-04). Symmetric rearrangements around infinity with applications to Lévy processes. Probability Theory and Related Fields 158 (3-4) : 637-664. ScholarBank@NUS Repository. https://doi.org/10.1007/s00440-013-0492-1
dc.identifier.issn01788051
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/126647
dc.description.abstractWe prove a new rearrangement inequality for multiple integrals, which partly generalizes a result of Friedberg and Luttinger (Arch Ration Mech 61:35-44, 1976) and can be interpreted as involving symmetric rearrangements of domains around ∞. As applications, we prove two comparison results for general Lévy processes and their symmetric rearrangements. The first application concerns the survival probability of a point particle in a Poisson field of moving traps following independent Lévy motions. We show that the survival probability can only increase if the point particle does not move, and the traps and the Lévy motions are symmetrically rearranged. This essentially generalizes an isoperimetric inequality of Peres and Sousi (Geom Funct Anal 22(4):1000-1014, 2012) for the Wiener sausage. In the second application, we show that the q-capacity of a Borel measurable set for a Lévy process can only decrease if the set and the Lévy process are symmetrically rearranged. This result generalizes an inequality obtained by Watanabe (Z Wahrsch Verw Gebiete 63:487-499, 1983) for symmetric Lévy processes. © 2013 Springer-Verlag Berlin Heidelberg.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00440-013-0492-1
dc.sourceScopus
dc.subjectCapacity
dc.subjectIsoperimetric inequality
dc.subjectLévy process
dc.subjectLévy sausage
dc.subjectPascal principle
dc.subjectRearrangement inequality
dc.subjectTrapping dynamics
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00440-013-0492-1
dc.description.sourcetitleProbability Theory and Related Fields
dc.description.volume158
dc.description.issue3-4
dc.description.page637-664
dc.identifier.isiut000332975200005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.