Please use this identifier to cite or link to this item: https://doi.org/10.1007/s11784-012-0073-4
DC FieldValue
dc.titleMorse theory, Higgs fields, and Yang-Mills-Higgs functionals
dc.contributor.authorBradlow, S.B.
dc.contributor.authorWilkin, G.
dc.date.accessioned2016-09-06T05:44:10Z
dc.date.available2016-09-06T05:44:10Z
dc.date.issued2012
dc.identifier.citationBradlow, S.B., Wilkin, G. (2012). Morse theory, Higgs fields, and Yang-Mills-Higgs functionals. Journal of Fixed Point Theory and Applications 11 (1) : 1-41. ScholarBank@NUS Repository. https://doi.org/10.1007/s11784-012-0073-4
dc.identifier.issn16617738
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/126635
dc.description.abstractIn this mostly expository paper we describe applications of Morse theory to moduli spaces of Higgs bundles. The moduli spaces are finite-dimensional analytic varieties but they arise as quotients of infinite-dimensional spaces. There are natural functions for Morse theory on both the infinite-dimensional spaces and the finite-dimensional quotients. The first comes from the Yang-Mills-Higgs energy, while the second is provided by the Hitchin function. After describing what Higgs bundles are, we explore these functions and how they may be used to extract topological information about the moduli spaces. © 2012 Springer Basel AG.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s11784-012-0073-4
dc.sourceScopus
dc.subjectHiggs bundles
dc.subjectMorse theory
dc.subjectsurface groups
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s11784-012-0073-4
dc.description.sourcetitleJournal of Fixed Point Theory and Applications
dc.description.volume11
dc.description.issue1
dc.description.page1-41
dc.identifier.isiut000307271300001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.