Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-41202-8_20
DC FieldValue
dc.titleAsymptotic bounds for quantitative verification of perturbed probabilistic systems
dc.contributor.authorSu, G.
dc.contributor.authorRosenblum, D.S.
dc.date.accessioned2016-06-02T09:25:21Z
dc.date.available2016-06-02T09:25:21Z
dc.date.issued2013
dc.identifier.citationSu, G.,Rosenblum, D.S. (2013). Asymptotic bounds for quantitative verification of perturbed probabilistic systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8144 LNCS : 297-312. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-41202-8_20" target="_blank">https://doi.org/10.1007/978-3-642-41202-8_20</a>
dc.identifier.isbn9783642412011
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/124983
dc.description.abstractThe majority of existing probabilistic model checking case studies are based on well understood theoretical models and distributions. However, real-life probabilistic systems usually involve distribution parameters whose values are obtained by empirical measurements and thus are subject to small perturbations. In this paper, we consider perturbation analysis of reachability in the parametric models of these systems (i.e., parametric Markov chains) equipped with the norm of absolute distance. Our main contribution is a method to compute the asymptotic bounds in the form of condition numbers for constrained reachability probabilities against perturbations of the distribution parameters of the system. The adequacy of the method is demonstrated through experiments with the Zeroconf protocol and the hopping frog problem. © 2013 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-41202-8_20
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-41202-8_20
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume8144 LNCS
dc.description.page297-312
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.