Please use this identifier to cite or link to this item: https://doi.org/10.3389/fncir.2013.00055
DC FieldValue
dc.titleIn vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas
dc.contributor.authorHira, R.
dc.contributor.authorOhkubo, F.
dc.contributor.authorTanaka, Y.R.
dc.contributor.authorMasamizu, Y.
dc.contributor.authorAugustine, G.J.
dc.contributor.authorKasai, H.
dc.contributor.authorMatsuzaki, M.
dc.date.accessioned2016-06-01T10:26:18Z
dc.date.available2016-06-01T10:26:18Z
dc.date.issued2013-03-11
dc.identifier.citationHira, R., Ohkubo, F., Tanaka, Y.R., Masamizu, Y., Augustine, G.J., Kasai, H., Matsuzaki, M. (2013-03-11). In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas. Frontiers in Neural Circuits (MAR) : -. ScholarBank@NUS Repository. https://doi.org/10.3389/fncir.2013.00055
dc.identifier.issn16625110
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/124694
dc.description.abstractInteractions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b, of the CFA. Further, the CFA receives strong projections from layer 5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections. © 2013 Hira, Ohkubo, Tanaka, Masamizu, Augustine, Kasai and Matsuzaki.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.3389/fncir.2013.00055
dc.sourceScopus
dc.subjectChannelrhodopsin-2
dc.subjectCorticocortical connections
dc.subjectMotor cortex
dc.subjectOptogenetics
dc.subjectPhotostimulation mapping
dc.typeArticle
dc.contributor.departmentDUKE-NUS GRADUATE MEDICAL SCHOOL S'PORE
dc.description.doi10.3389/fncir.2013.00055
dc.description.sourcetitleFrontiers in Neural Circuits
dc.description.issueMAR
dc.description.page-
dc.identifier.isiut000317569600001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

33
checked on Dec 9, 2019

WEB OF SCIENCETM
Citations

33
checked on Dec 2, 2019

Page view(s)

88
checked on Nov 29, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.