Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jhydrol.2014.03.016
Title: Improving numerical forecast accuracy with ensemble Kalman filter and chaos theory: Case study on Ciliwung river model
Authors: Sun, Y. 
Doan, C.D. 
Dao, A.T.
Liu, J.
Liong, S.-Y. 
Keywords: Chaos theory
Ciliwung river
Data assimilation
Ensemble kalman filter
Issue Date: 6-May-2014
Citation: Sun, Y., Doan, C.D., Dao, A.T., Liu, J., Liong, S.-Y. (2014-05-06). Improving numerical forecast accuracy with ensemble Kalman filter and chaos theory: Case study on Ciliwung river model. Journal of Hydrology 512 : 540-548. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jhydrol.2014.03.016
Abstract: The classic Kalman filter implementation uses the measurements up to the time of forecast to update the initial conditions of the numerical model, with the updating effect limited to a prediction horizon when the improved initial conditions are washed out. To further enhance the prediction capability, this study proposes a new hybrid data assimilation scheme, which adopts chaos theory to predict the measurements into the forecast phase, and then assimilates the predicted measurements into the numerical model using the ensemble Kalman filter.The hybrid data assimilation scheme is applied in a simulated real-time forecast of the Ciliwung river model. It is revealed that the hybrid scheme can further improve the modelling accuracy up to a prediction horizon of 4. days as compared to the update based solely on the ensemble Kalman filter. © 2014 Elsevier B.V.
Source Title: Journal of Hydrology
URI: http://scholarbank.nus.edu.sg/handle/10635/116405
ISSN: 00221694
DOI: 10.1016/j.jhydrol.2014.03.016
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.