Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00220-013-1779-x
DC FieldValue
dc.titleDistinguishing Multi-Partite States by Local Measurements
dc.contributor.authorLancien, C.
dc.contributor.authorWinter, A.
dc.date.accessioned2014-12-12T07:48:08Z
dc.date.available2014-12-12T07:48:08Z
dc.date.issued2013-10
dc.identifier.citationLancien, C., Winter, A. (2013-10). Distinguishing Multi-Partite States by Local Measurements. Communications in Mathematical Physics 323 (2) : 555-573. ScholarBank@NUS Repository. https://doi.org/10.1007/s00220-013-1779-x
dc.identifier.issn00103616
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/116297
dc.description.abstractWe analyze the distinguishability norm on the states of a multi-partite system, defined by local measurements. Concretely, we show that the norm associated to a tensor product of sufficiently symmetric measurements is essentially equivalent to a multi-partite generalisation of the non-commutative ℓ2-norm (aka Hilbert-Schmidt norm): in comparing the two, the constants of domination depend only on the number of parties but not on the Hilbert spaces dimensions. We discuss implications of this result on the corresponding norms for the class of all measurements implementable by local operations and classical communication (LOCC), and in particular on the leading order optimality of multi-party data hiding schemes. © 2013 Springer-Verlag Berlin Heidelberg.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00220-013-1779-x
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1007/s00220-013-1779-x
dc.description.sourcetitleCommunications in Mathematical Physics
dc.description.volume323
dc.description.issue2
dc.description.page555-573
dc.identifier.isiut000324067700005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.