Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10444-008-9084-5
DC FieldValue
dc.titleConvergence analysis of tight framelet approach for missing data recovery
dc.contributor.authorCai, J.-F.
dc.contributor.authorChan, R.H.
dc.contributor.authorShen, L.
dc.contributor.authorShen, Z.
dc.date.accessioned2014-12-12T07:30:51Z
dc.date.available2014-12-12T07:30:51Z
dc.date.issued2009-10
dc.identifier.citationCai, J.-F., Chan, R.H., Shen, L., Shen, Z. (2009-10). Convergence analysis of tight framelet approach for missing data recovery. Advances in Computational Mathematics 31 (1-3) : 87-113. ScholarBank@NUS Repository. https://doi.org/10.1007/s10444-008-9084-5
dc.identifier.issn10197168
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/115656
dc.description.abstractHow to recover missing data from an incomplete samples is a fundamental problem in mathematics and it has wide range of applications in image analysis and processing. Although many existing methods, e.g. various data smoothing methods and PDE approaches, are available in the literature, there is always a need to find new methods leading to the best solution according to various cost functionals. In this paper, we propose an iterative algorithm based on tight framelets for image recovery from incomplete observed data. The algorithm is motivated from our framelet algorithm used in high-resolution image reconstruction and it exploits the redundance in tight framelet systems. We prove the convergence of the algorithm and also give its convergence factor. Furthermore, we derive the minimization properties of the algorithm and explore the roles of the redundancy of tight framelet systems. As an illustration of the effectiveness of the algorithm, we give an application of it in impulse noise removal. © 2008 Springer Science+Business Media, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s10444-008-9084-5
dc.sourceScopus
dc.subjectImpulse noise
dc.subjectInpainting
dc.subjectMissing data
dc.subjectTight frame
dc.typeArticle
dc.contributor.departmentTEMASEK LABORATORIES
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s10444-008-9084-5
dc.description.sourcetitleAdvances in Computational Mathematics
dc.description.volume31
dc.description.issue1-3
dc.description.page87-113
dc.identifier.isiut000266642100005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.