Please use this identifier to cite or link to this item:
Title: Long-distance entanglement generation in two-dimensional networks
Authors: Broadfoot, S.
Dorner, U. 
Jaksch, D. 
Issue Date: 21-Oct-2010
Citation: Broadfoot, S., Dorner, U., Jaksch, D. (2010-10-21). Long-distance entanglement generation in two-dimensional networks. Physical Review A - Atomic, Molecular, and Optical Physics 82 (4) : -. ScholarBank@NUS Repository.
Abstract: We consider two-dimensional networks composed of nodes initially linked by two-qubit mixed states. In these networks we develop a global error correction scheme that can generate distance-independent entanglement from arbitrary network geometries using rank-2 states. By using this method and combining it with the concept of percolation, we also show that the generation of long-distance entanglement is possible with rank-3 states. Entanglement percolation and global error correction have different advantages depending on the given situation. To reveal the trade-off between them we consider their application to networks containing pure states. In doing so we find a range of pure-state schemes, each of which has applications in particular circumstances: For instance, we can identify a protocol for creating perfect entanglement between two distant nodes. However, this protocol cannot generate a singlet between any two nodes. In contrast, we can also construct schemes for creating entanglement between any nodes, but the corresponding entanglement fidelity is lower. © 2010 The American Physical Society.
Source Title: Physical Review A - Atomic, Molecular, and Optical Physics
ISSN: 10502947
DOI: 10.1103/PhysRevA.82.042326
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.