Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIT.2012.2185036
DC FieldValue
dc.titleInfinitely many constrained inequalities for the von neumann entropy
dc.contributor.authorCadney, J.
dc.contributor.authorLinden, N.
dc.contributor.authorWinter, A.
dc.date.accessioned2014-12-12T07:11:43Z
dc.date.available2014-12-12T07:11:43Z
dc.date.issued2012
dc.identifier.citationCadney, J., Linden, N., Winter, A. (2012). Infinitely many constrained inequalities for the von neumann entropy. IEEE Transactions on Information Theory 58 (6) : 3657-3663. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2012.2185036
dc.identifier.issn00189448
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/115150
dc.description.abstractWe exhibit infinitely many new, constrained inequalities for the von Neumann entropy, and show that they are independent of each other and the known inequalities obeyed by the von Neumann entropy (basically strong subadditivity). The new inequalities were proved originally by Makarychev for the Shannon entropy, using properties of probability distributions. Our approach extends the proof of the inequalities to the quantum domain, and includes their independence for the quantum and also the classical cases. © 2012 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TIT.2012.2185036
dc.sourceScopus
dc.subject-von Neumann entropy
dc.subjectLinear inequalities
dc.subjectquantum information
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1109/TIT.2012.2185036
dc.description.sourcetitleIEEE Transactions on Information Theory
dc.description.volume58
dc.description.issue6
dc.description.page3657-3663
dc.description.codenIETTA
dc.identifier.isiut000304245100023
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.