Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/115043
DC FieldValue
dc.titleConstruction of conjugate quadrature filters with specified zeros
dc.contributor.authorLawton, W.
dc.contributor.authorMicchelli, C.A.
dc.date.accessioned2014-12-12T07:10:22Z
dc.date.available2014-12-12T07:10:22Z
dc.date.issued1997
dc.identifier.citationLawton, W.,Micchelli, C.A. (1997). Construction of conjugate quadrature filters with specified zeros. Numerical Algorithms 14 (4) : 383-399. ScholarBank@NUS Repository.
dc.identifier.issn10171398
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/115043
dc.description.abstractLet ℂ denote the complex numbers and ℒ denote the ring of complex-valued Laurent polynomial functions on ℂ \ {0}. Furthermore, we denote by ℒR, ℒN the subsets of Laurent polynomials whose restriction to the unit circle is real, nonnegative, respectively. We prove that for any two Laurent polynomials P1, P2 ∈ ℒN, which have no common zeros in ℂ \ {0} there exists a pair of Laurent polynomials Q1, Q2 ∈ ℒN satisfying the equation Q1P1 + Q2P2 = 1. We provide some information about the minimal length Laurent polynomials Q1 and Q2 with these properties and describe an algorithm to compute them. We apply this result to design a conjugate quadrature filter whose zeros contain an arbitrary finite subset Λ ⊂ ℂ \ {0} with the property that for every λ, μ ∈ Λ, λ ≠ μ implies λ ≠ -μ and λ ≠ -1/μ̄.
dc.sourceScopus
dc.subjectConjugate quadrature filter
dc.subjectLaurent polynomials
dc.subjectPolynomial approximation
dc.subjectSpectral factorization
dc.typeArticle
dc.contributor.departmentINSTITUTE OF SYSTEMS SCIENCE
dc.description.sourcetitleNumerical Algorithms
dc.description.volume14
dc.description.issue4
dc.description.page383-399
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.