Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0031-3203(02)00061-4
DC FieldValue
dc.titleOff-line signature verification by the tracking of feature and stroke positions
dc.contributor.authorFang, B.
dc.contributor.authorLeung, C.H.
dc.contributor.authorTang, Y.Y.
dc.contributor.authorTse, K.W.
dc.contributor.authorKwok, P.C.K.
dc.contributor.authorWong, Y.K.
dc.date.accessioned2014-12-02T08:38:56Z
dc.date.available2014-12-02T08:38:56Z
dc.date.issued2003-01
dc.identifier.citationFang, B., Leung, C.H., Tang, Y.Y., Tse, K.W., Kwok, P.C.K., Wong, Y.K. (2003-01). Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition 36 (1) : 91-101. ScholarBank@NUS Repository. https://doi.org/10.1016/S0031-3203(02)00061-4
dc.identifier.issn00313203
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/114620
dc.description.abstractThere are inevitable variations in the signature patterns written by the same person. The variations can occur in the shape or in the relative positions of the characteristic features. In this paper, two methods are proposed to track the variations. Given the set of training signature samples, the first method measures the positional variations of the one-dimensional projection profiles of the signature patterns; and the second method determines the variations in relative stroke positions in the two-dimension signature patterns. The statistics on these variations are determined from the training set. Given a signature to be verified, the positional displacements are determined and the authenticity is decided based on the statistics of the training samples. For the purpose of comparison, two existing methods proposed by other researchers were implemented and tested on the same database. Furthermore, two volunteers were recruited to perform the same verification task. Results show that the proposed system compares favorably with other methods and outperforms the volunteers. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0031-3203(02)00061-4
dc.sourceScopus
dc.subjectElastic matching
dc.subjectFeature tracking
dc.subjectHandwriting recognition
dc.subjectOff-line system
dc.subjectSignature verification
dc.typeArticle
dc.contributor.departmentSINGAPORE-MIT ALLIANCE
dc.description.doi10.1016/S0031-3203(02)00061-4
dc.description.sourcetitlePattern Recognition
dc.description.volume36
dc.description.issue1
dc.description.page91-101
dc.description.codenPTNRA
dc.identifier.isiut000179101000009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.