Please use this identifier to cite or link to this item: https://doi.org/10.1021/ci050135u
Title: Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
Authors: Li, H. 
Yap, C.W. 
Ung, C.Y. 
Xue, Y. 
Cao, Z.W.
Chen, Y.Z. 
Issue Date: Sep-2005
Citation: Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Cao, Z.W., Chen, Y.Z. (2005-09). Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. Journal of Chemical Information and Modeling 45 (5) : 1376-1384. ScholarBank@NUS Repository. https://doi.org/10.1021/ci050135u
Abstract: The ability or inability of a drug to penetrate into the brain is a key consideration in drug design. Drugs for treating central nervous system (CNS) disorders need to be able to penetrate the blood-brain barrier (BBB). BBB nonpenetration is desirable for non-CNS-targeting drugs to minimize potential CNS-related side effects. Computational methods have been employed for the prediction of BBB-penetrating (BBB+) and -nonpenetrating (BBB-) agents at impressive accuracies of 75-92% and 60-80%, respectively. However, the majority of these studies give a substantially lower BBB- accuracy, and thus overall accuracy, than the BBB+ accuracy. This work examined whether proper selection of molecular descriptors can improve both the BBB- and the overall accuracies of statistical learning methods. The methods tested include logistic regression, linear discriminate analysis, k nearest neighbor, C4.5 decision tree, probabilistic neural network, and support vector machine. Molecular descriptors were selected by using a feature selection method, recursive feature elimination (RFE). Results by using 415 BBB+ and BBB- agents show that RFE substantially improves both the BBB- and the overall accuracy for all of the methods studied. This suggests that statistical learning methods combined with proper feature selection is potentially useful for facilitating a more balanced and improved prediction of BBB+ and BBB- agents. © 2005 American Chemical Society.
Source Title: Journal of Chemical Information and Modeling
URI: http://scholarbank.nus.edu.sg/handle/10635/114321
ISSN: 15499596
DOI: 10.1021/ci050135u
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.