Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.biomaterials.2013.10.037
Title: | The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry | Authors: | Li, Q. Kumar, A. Makhija, E. Shivashankar, G.V. |
Keywords: | Actin cytoskeleton Cell engineering Cell geometry Micropattern Nuclear mechanics |
Issue Date: | Jan-2014 | Citation: | Li, Q., Kumar, A., Makhija, E., Shivashankar, G.V. (2014-01). The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35 (3) : 961-969. ScholarBank@NUS Repository. https://doi.org/10.1016/j.biomaterials.2013.10.037 | Abstract: | Cells sense their physical microenvironment and transduce these signals through actin-nuclear links to regulate nuclear functions including gene expression. However, the spatio-temporal coupling between perinuclear actin and nucleus and their functional importance are still unclear. Using micropatterned substrates to control cell geometry, we show that perinuclear actin organization at the apical plane remodels from mesh-like structure to stress fibers. The formation of these apical stress fibers (ASFs) correlated with significant reduction in nuclear height and was found to exert an active compressive load on the nucleus via direct contact with mature focal adhesion sites. Interestingly, the dynamic nature of ASFs was found to transduce forces to chromatin assembly. In addition, geometric perturbations or using pharmacological drugs to inhibit actomyosin contractility of ASFs resulted in nuclear instability. Taken together, our work provides direct evidence of physical links between the nucleus and focal adhesion sites via ASFs, which modulate nuclear homeostatic balance and internal chromatin structure. We suggest that such direct links may underlie nuclear mechanotransduction to regulate genomic programs. © 2013 Elsevier Ltd. | Source Title: | Biomaterials | URI: | http://scholarbank.nus.edu.sg/handle/10635/113134 | ISSN: | 01429612 | DOI: | 10.1016/j.biomaterials.2013.10.037 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.