Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00220-008-0625-z
DC FieldValue
dc.titleCounterexamples to additivity of minimum output p-rényi entropy for p close to 0
dc.contributor.authorCubitt, T.
dc.contributor.authorHarrow, A.W.
dc.contributor.authorLeung, D.
dc.contributor.authorMontanaro, A.
dc.contributor.authorWinter, A.
dc.date.accessioned2014-11-28T05:00:58Z
dc.date.available2014-11-28T05:00:58Z
dc.date.issued2008-11
dc.identifier.citationCubitt, T., Harrow, A.W., Leung, D., Montanaro, A., Winter, A. (2008-11). Counterexamples to additivity of minimum output p-rényi entropy for p close to 0. Communications in Mathematical Physics 284 (1) : 281-290. ScholarBank@NUS Repository. https://doi.org/10.1007/s00220-008-0625-z
dc.identifier.issn00103616
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/112404
dc.description.abstractComplementing recent progress on the additivity conjecture of quantum information theory, showing that the minimum output p-Rényi entropies of channels are not generally additive for p > 1, we demonstrate here by a careful random selection argument that also at p = 0, and consequently for sufficiently small p, there exist counterexamples. An explicit construction of two channels from 4 to 3 dimensions is given, which have non-multiplicative minimum output rank; for this pair of channels, numerics strongly suggest that the p-Rényi entropy is non-additive for all p ≃ 0.11. We conjecture however that violations of additivity exist for all p < 1. © 2008 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00220-008-0625-z
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1007/s00220-008-0625-z
dc.description.sourcetitleCommunications in Mathematical Physics
dc.description.volume284
dc.description.issue1
dc.description.page281-290
dc.identifier.isiut000260059500010
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.