Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-21040-2_12
DC FieldValue
dc.titleA comparison of post-processing techniques for biased random number generators
dc.contributor.authorKwok, S.-H.
dc.contributor.authorEe, Y.-L.
dc.contributor.authorChew, G.
dc.contributor.authorZheng, K.
dc.contributor.authorKhoo, K.
dc.contributor.authorTan, C.-H.
dc.date.accessioned2014-11-28T01:53:04Z
dc.date.available2014-11-28T01:53:04Z
dc.date.issued2011
dc.identifier.citationKwok, S.-H.,Ee, Y.-L.,Chew, G.,Zheng, K.,Khoo, K.,Tan, C.-H. (2011). A comparison of post-processing techniques for biased random number generators. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6633 LNCS : 175-190. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-21040-2_12" target="_blank">https://doi.org/10.1007/978-3-642-21040-2_12</a>
dc.identifier.isbn9783642210396
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/111511
dc.description.abstractIn this paper, we study and compare two popular methods for post-processing random number generators: linear and Von Neumann compression. We show that linear compression can achieve much better throughput than Von Neumann compression, while achieving practically good level of security. We also introduce a concept known as the adversary bias which measures how accurately an adversary can guess the output of a random number generator, e.g. through a trapdoor or a bad RNG design. Then we prove that linear compression performs much better than Von Neumann compression when correcting adversary bias. Finally, we discuss on good ways to implement this linear compression in hardware and give a field-programmable gate array (FPGA) implementation to provide resource utilization estimates. © 2011 IFIP International Federation for Information Processing.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-21040-2_12
dc.sourceScopus
dc.subjectbias
dc.subjectentropy
dc.subjectlinear correcting codes
dc.subjectpost-processing
dc.subjectrandom number generators
dc.typeConference Paper
dc.contributor.departmentTEMASEK LABORATORIES
dc.description.doi10.1007/978-3-642-21040-2_12
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume6633 LNCS
dc.description.page175-190
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.