Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/111266
DC FieldValue
dc.titleMultilayer perceptron postprocessor to Hidden Markov modeling for speech recognition
dc.contributor.authorJin, Guo
dc.contributor.authorChung, Lui Ho
dc.date.accessioned2014-11-27T09:46:23Z
dc.date.available2014-11-27T09:46:23Z
dc.date.issued1993
dc.identifier.citationJin, Guo,Chung, Lui Ho (1993). Multilayer perceptron postprocessor to Hidden Markov modeling for speech recognition. Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing 2 : II-263. ScholarBank@NUS Repository.
dc.identifier.isbn0780309464
dc.identifier.issn07367791
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/111266
dc.description.abstractIn this paper, a new neural network postprocessor is introduced to enhance the classification capability of hidden Markov modeling for speech recognition. This postprocessor receives stimuli from not one but all word- HMMs for each word speech and does not require segmenting speech frames at subword level. A multilayer perceptron implementation has achieved 20% to 30% syllable error reduction in experiments reported here.
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentINSTITUTE OF SYSTEMS SCIENCE
dc.description.sourcetitleProceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
dc.description.volume2
dc.description.pageII-263
dc.description.codenIPROD
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.