Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.bios.2013.08.039
Title: A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers
Authors: Wu, Y.
Xue, P.
Hui, K.M. 
Kang, Y.
Keywords: Amplification-by-polymerization
Immunoassay
Multiplexed measurement of cancer biomarkers
Paper-based microfluidic electrochemical immunodevice
Issue Date: 15-Feb-2014
Citation: Wu, Y., Xue, P., Hui, K.M., Kang, Y. (2014-02-15). A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosensors and Bioelectronics 52 : 180-187. ScholarBank@NUS Repository. https://doi.org/10.1016/j.bios.2013.08.039
Abstract: A novel signal amplification strategy for ultrasensitive multiplexed detection of cancer biomarkers using a paper-based microfluidic electrochemical immunodevice is described. Specifically, a controlled radical polymerization reaction is triggered after the capture of target molecules on the immunodevice surface. Growth of long chain polymeric materials provides numerous sites for subsequent horseradish peroxidase (HRP) coupling, which in turn significantly enhances electrochemical signal output. The signal was further amplified through the use of graphene to modify the immunodevice surface to accelerate the electron transfer. Activators generated electron transfer for atom transfer radical polymerization (AGET ATRP) was used in this study for its high efficiency in polymer grafting and better tolerance toward oxygen in air. Glycidyl methacrylate (GMA) was examined to provide excess epoxy groups for HRP coupling. In the electrochemical immunodevice, eight carbon working electrodes, as well as their conductive pads, were screen-printed on a piece of square paper, and the same Ag/AgCl reference and carbon counter electrodes were shared with another piece of square paper via stacking. Using the HRP-O-phenylenediamine-H2O2 electrochemical detection system, four cancer biomarkers: carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), cancer antigen 125 (CA125), and carbohydrate antigen 153 (CA153) were detected. A limit of detection of 0.01, 0.01, 0.05 and 0.05ngmL-1 was demonstrated, respectively. The results show that the proposed strategy offers great promises in providing a sensitive and cost-effective solution for biosensing applications. © 2013 Elsevier B.V.
Source Title: Biosensors and Bioelectronics
URI: http://scholarbank.nus.edu.sg/handle/10635/110474
ISSN: 09565663
DOI: 10.1016/j.bios.2013.08.039
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

127
checked on Apr 17, 2021

WEB OF SCIENCETM
Citations

118
checked on Apr 9, 2021

Page view(s)

122
checked on Apr 11, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.