Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/110427
DC FieldValue
dc.titleImproving the prediction of treatment response in depression: Integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures
dc.contributor.authorKemp, A.H.
dc.contributor.authorGordon, E.
dc.contributor.authorRush, A.J.
dc.contributor.authorWilliams, L.M.
dc.date.accessioned2014-11-26T08:32:09Z
dc.date.available2014-11-26T08:32:09Z
dc.date.issued2008
dc.identifier.citationKemp, A.H.,Gordon, E.,Rush, A.J.,Williams, L.M. (2008). Improving the prediction of treatment response in depression: Integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectrums 13 (12) : 1066-1086. ScholarBank@NUS Repository.
dc.identifier.issn10928529
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/110427
dc.description.abstractAntidepressants are important in the treatment of depression, and selective serotonin reuptake inhibitors are first-line pharmacologic options. However, only 50% to 70% of patients respond to first treatment and
dc.sourceScopus
dc.typeReview
dc.contributor.departmentDUKE-NUS GRADUATE MEDICAL SCHOOL S'PORE
dc.description.sourcetitleCNS Spectrums
dc.description.volume13
dc.description.issue12
dc.description.page1066-1086
dc.description.codenCNSPF
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.