Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-1-61779-555-8_29
DC FieldValue
dc.titleGenotype calling for the illumina platform
dc.contributor.authorTeo, Y.Y.
dc.date.accessioned2014-11-26T05:03:29Z
dc.date.available2014-11-26T05:03:29Z
dc.date.issued2012
dc.identifier.citationTeo, Y.Y. (2012). Genotype calling for the illumina platform. Methods in Molecular Biology 850 : 525-538. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-1-61779-555-8_29" target="_blank">https://doi.org/10.1007/978-1-61779-555-8_29</a>
dc.identifier.isbn9781617795541
dc.identifier.issn10643745
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/108946
dc.description.abstractGenome-wide association studies have been made possible because of advancements in the design of genotyping technologies to assay a million or more single nucleotide polymorphisms (SNPs) simultaneously. This has resulted in the introduction of automated and unsupervised statistical approaches for translating the probe hybridization intensities into the actual genotype calls. This chapter aims to provide an introduction to this process of genotype calling, highlighting in particular the design and approach used for the Illumina BeadArray platforms that are commonly used in large-scale genetic studies. The chapter also provides detailed instructions for preparing the input files required as well as the actual Linux commands and options to execute the ILLUMINUS software. Finally, it concludes with a brief exposition on the different outcomes from genotype calling and the use of perturbation analysis for identifying SNPs with erroneous genotype calls. © 2012 Springer Science+Business Media, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-1-61779-555-8_29
dc.sourceScopus
dc.subjectClusterplots
dc.subjectExpectation maximization
dc.subjectGenotype calling
dc.subjectHybridization
dc.subjectIllumina
dc.subjectMixture model
dc.subjectNormalization
dc.subjectOligonucleotide microarray
dc.subjectPerturbation analysis
dc.subjectQuality control
dc.typeArticle
dc.contributor.departmentSAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
dc.description.doi10.1007/978-1-61779-555-8_29
dc.description.sourcetitleMethods in Molecular Biology
dc.description.volume850
dc.description.page525-538
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.