Please use this identifier to cite or link to this item: https://doi.org/10.1111/j.1600-0587.2011.07190.x
Title: Accounting for uncertainty in colonisation times: A novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution data
Authors: Catterall, S.
Cook, A.R. 
Marion, G.
Butler, A.
Hulme, P.E.
Issue Date: Oct-2012
Citation: Catterall, S., Cook, A.R., Marion, G., Butler, A., Hulme, P.E. (2012-10). Accounting for uncertainty in colonisation times: A novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution data. Ecography 35 (10) : 901-911. ScholarBank@NUS Repository. https://doi.org/10.1111/j.1600-0587.2011.07190.x
Abstract: A novel, yet generic, Bayesian approach to parameter inference in a stochastic, spatio-temporal model of dispersal and colonisation is developed and applied to the invasion of a region by an alien plant species. The method requires species distribution data from multiple time points, and accounts for temporal uncertainty in colonisation times inherent in such data. Covariates, such as climate parameters, altitude and land use, which capture variation in the suitability of sites for plant colonisation, are easily incorporated into the model. The method assumes no local extinction of occupied sites and thus is primarily applicable to modelling distribution data at relatively coarse spatial resolutions of plant species whose range is expanding over time. The implementation of the model and inference algorithm are illustrated through application to British floristic atlas data for the widespread alien Heracleum mantegazzianum (giant hogweed) assessed at a 10 × 10 km resolution in 1970 and 2000. We infer key characteristics of this species, predict its future spread, and use the resulting fitted model to inform a simulation-based assessment of the methodology. Simulated distribution data are used to validate the inference algorithm. Our results suggest that the accuracy of inference is not sensitive to the number of distribution time points, requiring only that there are at least two points in time when distributions are mapped. We demonstrate the utility of the modelling approach by making future forecasts and historic hindcasts of the distribution of giant hogweed in Great Britain. Giant hogweed is one of the worst alien plants in Britain and has rapidly increased its range since 1970, yet we highlight that a further 20% of land area remains susceptible to colonisation by this species. We use the robustness of this case study to discuss the potential for modelling distribution data for other species and at different spatial scales. © 2012 The Authors.
Source Title: Ecography
URI: http://scholarbank.nus.edu.sg/handle/10635/108712
ISSN: 09067590
DOI: 10.1111/j.1600-0587.2011.07190.x
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.