Please use this identifier to cite or link to this item: https://doi.org/10.1117/12.769975
DC FieldValue
dc.titleImage based grading of nuclear cataract by SVM regression
dc.contributor.authorHuiqi, L.
dc.contributor.authorJoo, H.L.
dc.contributor.authorJiang, L.
dc.contributor.authorTien, Y.W.
dc.contributor.authorTan, A.
dc.contributor.authorJie, J.W.
dc.contributor.authorMitchell, P.
dc.date.accessioned2014-11-25T09:48:16Z
dc.date.available2014-11-25T09:48:16Z
dc.date.issued2008
dc.identifier.citationHuiqi, L., Joo, H.L., Jiang, L., Tien, Y.W., Tan, A., Jie, J.W., Mitchell, P. (2008). Image based grading of nuclear cataract by SVM regression. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6915 : -. ScholarBank@NUS Repository. https://doi.org/10.1117/12.769975
dc.identifier.isbn9780819470997
dc.identifier.issn16057422
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/108613
dc.description.abstractCataract is one of the leading causes of blindness worldwide. A computer-aided approach to assess nuclear cataract automatically and objectively is proposed in this paper. An enhanced Active Shape Model (ASM) is investigated to extract robust lens contour from slit-lamp images. The mean intensity in the lens area, the color information on the central posterior subcapsular reflex, and the profile on the visual axis are selected as the features for grading. A Support Vector Machine (SVM) scheme is proposed to grade nuclear cataract automatically. The proposed approach has been tested using the lens images from Singapore National Eye Centre. The mean error between the automatic grading and grader's decimal grading is 0.38. Statistical analysis shows that 97.8% of the automatic grades are within one grade difference to human grader's integer grades. Experimental results indicate that the proposed automatic grading approach is promising in facilitating nuclear cataract diagnosis.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1117/12.769975
dc.sourceScopus
dc.subjectActive shape model
dc.subjectNuclear cataract
dc.subjectSlit-lamp image
dc.subjectSVM regression
dc.typeConference Paper
dc.contributor.departmentOPHTHALMOLOGY
dc.description.doi10.1117/12.769975
dc.description.sourcetitleProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.description.volume6915
dc.description.page-
dc.identifier.isiut000256380300110
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.